Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > Mass Can Be 'Created' Inside Graphene, Say Physicists

October 21st, 2010

Mass Can Be 'Created' Inside Graphene, Say Physicists

Abstract:
One of the most exciting new ideas in solid state physics is that graphene can act as a laboratory for studying exotic relativistic physics. It turns out that the electronic properties of graphene can be tuned so that the movement of electrons and holes through the structure at speeds of 10^6 m/s is mathematically equivalent to the behaviour of electrons travelling in a vacuum close to the speed of light.

In the language of physics, their behaviour is governed not by the conventional Schrodinger equation that ordinary electrons obey, but by the massless Dirac equation than describes relativistic physics. These equations take no account of mass (as the name implies)--so the electrons and holes behave as if they have no mass.

That's important because, in the past, the relativistic behaviour of electrons was only accessible to physicists with a high energy particle accelerator in their yard. Now any laboratory equipped with carbon, electricity and wires can do it.

This has led to massive interest: one idea is that a new generation of graphene-based electronic devices will be able to exploit the effects possible in relativistic physics rather than using plain old vanilla effects (although exactly how isn't yet clear).

Source:
technologyreview.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Physics

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025

Possible Futures

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project