Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Wallflowers become extroverts in a crowd

Abstract:
While it's long been said that two's company and three's a crowd, that's just how mesons like it. A recent experiment at DOE's Jefferson Lab demonstrates that these subatomic particles engage more with other particles when in a crowd.

Wallflowers become extroverts in a crowd

Posted on October 1st, 2010

One of the simplest ways to study subatomic particles is to scatter a highly energetic beam of particles off a single proton. However, the reality is a little messier. Most nuclear physics experiments produce new particles inside nuclei, which contain many protons and neutrons. A nucleus presents far more crowded conditions: new particles are surrounded by the nucleus' protons and neutrons, and their quarks and gluons.

Physicists conducted an experiment to measure how easy or difficult it is for a particle to travel through the crowded conditions of different nuclei, their so-called nuclear transparency. In the experiment, energetic photons were beamed into the nuclei of five targets: deuterium, carbon, titanium, iron and lead. Two types of mesons, omega and phi, were produced as the photons smacked into the nucleus. Just like protons and neutrons, omega and phi mesons are built of quarks.

The experimenters found that the more protons and neutrons in the nucleus, the fewer omega and phi mesons made it out. Hence, in terms of nuclear transparency, the nucleus becomes less transparent to mesons as its numbers of protons and neutrons increase.

The new paper (*) featuring the result was published in the September 10 issue of Physical Review Letters.

(*) prl.aps.org/abstract/PRL/v105/i11/e112301

####

For more information, please click here

Contacts:
Kandice Carter
757.269.7263

Copyright © DOE Pulse

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Physics

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project