Home > Press > Platinum and Light together Fight Cancer
![]() |
Activating platinum with light: An inert platinum(IV) diazido complex trans, trans,trans-[Pt(N3)2(OH)2(py)2] becomes potently cytotoxic to cancer cells when activated by low doses of visible light. |
Abstract:
For tumor treatment with few side effects: platinum complex initiates cytotoxic effect upon targeted irradiation with visible light
Researchers continue to search for cancer treatments that effectively destroy tumor cells while protecting surrounding healthy tissue and the body. One intriguing approach involves photoactivated drugs: an inactive precursor would be administered, then the diseased tissue could be irradiated to convert the drug into its cytotoxic form locally. Peter J. Sadler and his co-workers at the Universities of Warwick and Edinburgh, as well as the Ninewells Hospital in Dundee, have developed a new platinum complex that is suitable for this approach. As the British researchers report in the journal Angewandte Chemie, this new drug was demonstrably superior to conventional cisplatin.
The challenge in the production of photactivated cystostatic drugs is that the inactive form must be thermally stable and must reach its target areas, such as the DNA of diseased cells, intact prior to irradiation. Such compounds must thus be resistant to reactive biomolecules like the reductant glutathione, which is present at high concentrations in all cells. "Another challenge lies in controlling the wavelength of light used to activate the drug," says Sadler. "The wavelength determines how far into the irradiated tissue the light can travel. Longer wavelengths go in farther than shorter ones."
Platinum complexes are proven antitumor agents. Cisplatin is one prominent example. However, platinum drugs have significant side effects. Sadler and his co-workers hope that these can be reduced through the use of photoactivated platinum drugs. To achieve this they have developed a new platinum complex that contains two azido (N3), two hydroxy (OH), and two pyridine ligands. In its inactive form, the complex demonstrates the required stability, even toward reactive biomolecules. "The special thing about our complex is that is not only activated by UV light," reports Sadler, "but also by low doses of blue or green light." Light activation generates a powerful cytotoxic compound that has proven to be significantly more effective than cisplatin against a whole series of cancer cells tested. Says Sadler: "The mechanism by which this drug works is clearly different from cisplatin. This is likely due to the two pyridine ligands that remain bound to the platinum after photoactivation."
"We hope that photoactivated platinum complexes will make it possible to treat cancers that have previously not reacted to chemotherapy with platinum complexes," says Sadler. "Tumors that have developed resistance to conventional platinum drugs could respond to these complexes."
Author: Peter J. Sadler, University of Warwick (UK),
www2.warwick.ac.uk/fac/sci/chemistry/research/chemicalbiology/sadler/sadlergroup/people/sadler/
Title: A Potent Trans-Diimine Platinum Anticancer Complex Photoactivated by Visible Light
Angewandte Chemie International Edition, Permalink to the article:dx.doi.org/10.1002/anie.201003399
####
For more information, please click here
Contacts:
Editorial office:
Copyright © Angewandte Chemie
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Possible Futures
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Nanomedicine
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Nanobiotechnology
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |