Home > Press > Nanoparticles for Cultural Heritage Conservation
Chemistry – A European Journal. Special Issue: Conference Issue: 3rd European Chemistry Congress, Nürnberg Volume 16, Issue 31, pages 9374–9382, August 16, 2010 |
Abstract:
New Concepts and Materials for the Consolidation and Protection of Wall Paintings
The conservation of Mayan wall paintings at the archaeological site of Calakmul (Mexico) will be one on the subjects touched upon by Piero Baglioni (based at the University of Florence) in his invited lecture at the 3rd European Chemistry Congress in Nürnberg in September. In a special issue of Chemistry—A European Journal, which contains papers by many of the speakers at this conference, he reports on the latest developments on the use of humble calcium and barium hydroxides nanoparticles as a versatile and highly efficient tool to combat the main degradation processes that affect wall paintings.
La Antigua Ciudad Maya de Calakmul is located in the Campeche state (Mexico) and is one of the most important cities of the Classic Maya period (AD 250-800). The excavation of this site (set up in 1993) involves, under the supervision of the archaeologist Ramon Carrasco, archaeologists, architects, engineers, conservators and epigraphists, besides other specialists. Since 2004, the Center for Colloid and Surface Science (CSGI) at the University of Florence (CSGI), and currently directed by Piero Baglioni, has been an active partner, being involved in the study of the painting technique and in the development of nanotechnology for the consolidation and protection of the wall paintings and limestone.
Over the last decades, polymers, mainly acrylic and vinyl resins, have been widely used to consolidate wall paintings and to confer protection and hydrorepellency to the painted layer. However, contrary to the expectations, polymers used for the protection of wall paintings have induced further degradation of the works of art and their chemical modifications, such as cross-linking, strongly hampers their removal. Hence, there has been a need to develop new methods of conservation.
In Florence, Piero Baglioni and his group have pioneered the use of calcium hydroxide nanoparticles to restore wall paintings, the degradation of which is basically due to the transformation of calcium carbonate into gypsum. Nanoparticles of calcium hydroxide efficiently interact with carbon dioxide to reform calcium carbonate and replace the degraded original ligand, leading to the re-cohesion of the paint layer. However, when large amounts of soluble sulfates (i.e., sodium or magnesium sulfates) are present in a wall painting, consolidation with calcium hydroxide nanoparticles might not produce durable results. In fact, sulfate ions can react with calcium hydroxide to give a double-exchange reaction, producing the slightly soluble gypsum (calcium sulfate dihydrate). Barium hydroxide nanoparticles represent a really useful alternative and a complementary tool to hinder this process. Hence, mixed formulations can be used for the pre-consolidation of surfaces largely contaminated by sulfates.
In Calakmul, Mayan paintings have been successfully treated by using a mixture of calcium and barium hydroxide nanoparticles as a dispersion in 1-propanol. The consolidation effect was significant already after one week. The result of the application is that the paintings are now stable and do not show ongoing degradation processes. Thus, nanoscience has opened up enormous potential for Cultural Heritage conservation, due to the unique properties that the reduction in particle size confers to nanomaterials compared to their micrometric counterparts.
Author: Piero Baglioni, Università degli Studi di Firenze (Italy), matsci.unipv.it/CSGI/proc/People.aspx?ID=35
Title: Nanoparticles for Cultural Heritage Conservation: Calcium and Barium Hydroxide Nanoparticles for Wall Painting Consolidation
Chemistry - A European Journal, Permalink to the article: dx.doi.org/10.1002/chem.201001443
####
For more information, please click here
Copyright © Chemistry - A European Journal
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Human Interest/Art
Drawing data in nanometer scale September 30th, 2022
Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022
Graphene nanotubes revolutionize touch screen use for prosthetic hands August 3rd, 2021
JEOL Announces 2020 Microscopy Image Grand Prize Winners January 7th, 2021
Events/Classes
A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024
Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||