Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanomaterials Researcher Hopes His Work Helps Build a More-Efficient Nuclear Reactor

Dr. Hongbing Lu has landed the biggest research grant yet within the University’s young Mechanical Engineering Department.
Dr. Hongbing Lu has landed the biggest research grant yet within the University’s young Mechanical Engineering Department.

Abstract:
With renewed attention being given to nuclear power, a UT Dallas researcher has snagged an $875,000 Department of Energy (DOE) grant to explore a means to boost power plant efficiency and reduce nuclear waste.

Nanomaterials Researcher Hopes His Work Helps Build a More-Efficient Nuclear Reactor

Dallas, TX | Posted on July 19th, 2010

It's the biggest research grant yet within the University's young Mechanical Engineering Department.

Dr. Hongbing Lu, a nanomaterials expert and the first holder of the Louis Beecherl Jr. Chair in mechanical engineering at the Erik Jonsson School of Engineering and Computer Science, will simulate the cracks that form in the metal-alloy surface, or cladding, of nuclear fuel rods. These cracks - which develop in the stressful reactor environment of tremendous heat, corrosion, irradiation and pressure - are microscopic in size but can cause a reduction in the fuel burn-up rate, decreasing power station efficiency and increasing nuclear waste.

"We're working on a very general simulation methodology that can be applied to that kind of environment," Lu said. "It's more than just crack growth. We need to understand how the material behaves under extreme pressure, temperature, corrosion and irradiation. With the methodology we're using, we're taking all of those factors into consideration and incorporating material behaviors into some mathematical models to describe them under very complicated conditions."

Lu and his team will generate data about the effects of pressure and temperature, factoring in DOE information about fission and other labs' information about the effects of corrosion.

"Once we've gathered all of the information on nuclear fuel cladding in that environment, then we'll be able to plug it all into a simulation code and develop a better understanding of how quickly the cracks grow," Lu said. "At that point we can go beyond the simulations and begin working on actual materials tested in the government labs."

The ultimate goal is to use the results to come up with a better fuel-cladding material, but the work should have application in a variety of other areas as well.

"The same simulation methodologies we're developing can be applied to other parts of a nuclear power station," Lu said. "Take the pressure vessels, for instance. The environment may not be as extreme as in the fuel cladding - the temperature and radiation may be lower - but, overall, the two environments are very similar. And if you remove the radiation, you can apply the methodologies to other high-pressure environments such as engines."

Despite lingering concerns by the public about the safety of nuclear power plants even decades after the Three-Mile Island and Chernobyl nuclear accidents, the planet is in the midst of what has been called a nuclear renaissance, especially in China and India. Lu hopes to assuage people's concerns.

"With the use of modern technology, nuclear energy is really safe," Lu said. "It's quite different from many decades ago. The nuclear physics has already been figured out. Other things are dictating the efficiency of the fuel burn-up. You need people from all disciplines. My contribution has to do with the mechanics and materials aspects of the nuclear fission process."

Energy is one of the primary issues society has to deal with right now, he added, noting that alternatives to fossil fuels are desperately needed.

####

For more information, please click here

Contacts:
Media Contact: Jimmie Markham, UT Dallas, (972) 883-2198,

Office of Media Relations, UT Dallas, (972) 883-2155,


Copyright © UT Dallas

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Environment

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

New gel could boost coral reef restoration: The substance, applied to surfaces as a coating, improved coral larvae settlement by up to 20 times in experiments compared to untreated surfaces May 16th, 2025

Onion-like nanoparticles found in aircraft exhaust May 14th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

Energy

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project