Home > Press > Nanomaterials Researchers’ Guide for Solving Optimization Problems Now Available from NAG
view full-sized image: www.almcommunications.com/photos/nag/nag_tree3%20small.jpg |
Abstract:
Worldwide nanomaterials researchers seeking the most appropriate way to solve difficult optimization problems typical of nanomaterials research can get easy to follow step-by-step instructions on how to select the best-suited local or global optimization routines, from the Numerical Algorithms Group (NAG) Library, by making use of the Decision Trees for optimization (www.nag.com/market/techtip027.asp).
NAG, a not-for-profit numerical software development organization, devotes significant R&D resources to continually advance methods for solving optimization problems and similar computational challenges. The NAG Decision Trees are part of the documentation for one of the most rigorously tested and documented sets of optimization routines and other mathematical and statistical algorithms in the world, collected into the Numerical Algorithms Group Library (www.nag.com/numeric/numerical_libraries.asp). The NAG Library of routines, including the optimization chapters, can be called from diverse environments such as C++, Fortran, MATLAB and R.
Many of those who use NAG's routines, as the building blocks of their applications, rely on the knowledge base in NAG's exhaustive documentation as a part of the "future-proofing" of their application development investments. The Decision Trees, which are a feature of this documentation, are especially useful in helping both new and experienced users to select the appropriate routine for the problem at hand in a matter of minutes.
Dr. David Sayers, a Principal Technical Consultant at NAG commenting on the complexities of selecting optimization algorithms says, "For maximum efficiency, different algorithms should be used for a different problem types. Often these types are characterized by the type of objective function - that is to be minimized or maximized - and by the types of constraints that are to be applied. Objective functions might be linear, quadratic (positive-definite or indefinite) or nonlinear. They may have a special form, like a sum of squares. They may be sparse or dense and they may be smooth or discontinuous. Combine these with the options for constraints: none, simple bound, linear or genuine nonlinear and we can see that a comprehensive chapter of optimization routines can be very large. To help the user to choose the right routine decision trees are invaluable."
With origins in several UK universities, the Numerical Algorithms Group (NAG, www.nag.com), has its headquarters in Oxford, and is a not-for-profit organization that collaborates with world-leading researchers and practitioners in academia and industry. NAG serves its customers from offices in Oxford, Manchester, Chicago, Tokyo and Taipei, through field sales staff in France and Germany, as well as via a global network of distributors.
####
About Numerical Algorithms Group
The Numerical Algorithms Group (NAG) is dedicated to applying its unique expertise in numerical software engineering to delivering high quality computational software and high performance computing services. For four decades NAG experts have worked closely with world-leading researchers in academia and industry to create powerful, accurate and flexible software which today is relied upon by tens of thousands of users, companies, learning institutions as well as numerous independent software vendors.
From multicore workstations to the latest supercomputers, NAG's robust products, parallel software development services and independent consulting can support your modeling and computing needs.
For more information, please click here
Contacts:
For editorial inquiries, please contact:
Amy Munice, ALM Communications, +1-773-862-6800, (skype) ALMCommunications
Or
Katie O’Hare, NAG Marketing Communications Manager, +44 (0)1865 511245
Or
Hiro Chiba, Chief Operating Officer – Nihon NAG,
+81 3 5542 6311
Or
Edward Chou, NAG Greater China General Manager, Tel: +886-2-25093288
Copyright © Numerical Algorithms Group
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Software
Visualizing nanoscale structures in real time: Open-source software enables researchers to see materials in 3D while they're still on the electron microscope August 19th, 2022
Luisier wins SNSF Advanced Grant to develop simulation tools for nanoscale devices July 8th, 2022
Oxford Instruments’ Atomfab® system is production-qualified at a market-leading GaN power electronics device manufacturer December 17th, 2021
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Tools
Turning up the signal November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||