Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Raytheon BBN Technologies Achieves Quantum Information Breakthrough

Abstract:
Controlling interaction of light and matter is a major advance toward large-scale quantum computing

Raytheon BBN Technologies Achieves Quantum Information Breakthrough

Cambridge, MA | Posted on June 22nd, 2010

Raytheon Company's (NYSE: RTN) BBN Technologies has achieved a major advance in quantum information technology with the coupling of light and superconductors.

The achievement is described in a paper, "Direct Observation of Coherent Population Trapping in a Superconducting Artificial Atom," that was recently published in Physical Review Letters. Written by three Raytheon BBN physicists, William R. Kelly, Zachary Dutton, and Thomas A. Ohki, and colleagues John Schlafer and Bhaskar Mookerji, as well as two additional collaborators from the National Institute of Standards and Technology, the paper describes a physics breakthrough that author Zachary Dutton predicted in a paper he published in 2004.

Similar quantum interference effects have been seen with light and atoms in the past, but this is the first such observation with superconductors. Normally, superconducting artificial atoms absorb photons at a particular frequency. However, the authors have discovered that applying a second field at a different frequency can be used to prevent this absorption, making the artificial atom effectively transparent.

The discovery opens up a new possibility in the quest for efficient coupling of superconducting quantum bits, or qubits. "Superconducting artificial atoms offer fast and reliable processing, and light offers fast and reliable transmission over long distances," said Will Kelly, associate scientist, Raytheon BBN Technologies. "Combining light and superconducting artificial atoms offers the best of both and is a promising development for building a large-scale quantum computer."

Zachary Dutton, senior scientist, Raytheon BBN Technologies, said, "The next step is to demonstrate that we can slow light down, which would enable us to build a system that can store light, a vital piece for quantum computing."

Raytheon BBN Technologies President Tad Elmer added, "Controlling the interaction between light and matter is an extraordinary research achievement, and it's even more remarkable that it was done at a U.S. industrial lab."

Raytheon BBN Technologies is a wholly owned subsidiary of Raytheon Company.

Raytheon Company, with 2009 sales of $25 billion, is a technology and innovation leader specializing in defense, homeland security and other government markets throughout the world. With a history of innovation spanning 88 years, Raytheon provides state-of-the-art electronics, mission systems integration and other capabilities in the areas of sensing; effects; and command, control, communications and intelligence systems, as well as a broad range of mission support services. With headquarters in Waltham, Mass., Raytheon employs 75,000 people worldwide.

Note to Editors:

W.R. Kelly, Z. Dutton, J. Schlafer, B. Mookerji, T.A. Ohki, J.S. Kline, and D.P. Pappas, "Direct Observation of Coherent Population Trapping in a Superconducting Artificial Atom," Physical Review Letters (2010). Available online: link.aps.org/doi/10.1103/PhysRevLett.104.163601

####

For more information, please click here

Contacts:
Joyce Kuzmin
617.873.8120


Mark Gauthier
617.873.8130

Copyright © Raytheon

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Quantum Computing

New quantum encoding methods slash circuit complexity in machine learning November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project