Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > EU-funded team drives biocomputing advances

Abstract:
EU-funded scientists have succeeded in demonstrating the feasibility of components for a kind of 'biocomputer', paving the way for new advances in the field of bioengineering. The scientists, from the Chemistry Department at the University of Liège in Belgium and the Institute of Chemistry at the Hebrew University of Jerusalem in Israel, set out the details of their work in an article in the journal Nature Nanotechnology.

EU-funded team drives biocomputing advances

EU | Posted on June 1st, 2010

EU support for the research came from the MOLOC ('Molecular logic circuits') project, which received just over EUR 2 million of its EUR 2.67 million budget from the 'Information and communication technologies' (ICT) Theme of the Seventh Framework Programme (FP7).

For the study, led by Professor Itamar Willner of the Hebrew University of Jerusalem, the researchers theoretically developed and experimentally demonstrated that artificial catalytic nucleic acids known as DNAzymes and their substrates can form a viable platform for the logic operations that are key to computational processes.

The work could aid in the development of applications in nanomedicine, for example, where the ability to carry out logic operations at the molecular level could facilitate the analysis of a disease and trigger the response of therapeutic agents.

'Biological systems that are capable of performing computational operations could be of use in bioengineering and nanomedicine, and DNA [deoxyribonucleic acid] and other biomolecules have already been used as active components in biocomputational circuits,' the researchers write.

'However, for biocomputational circuits to be useful for applications it will be necessary to develop a library of computing elements, to demonstrate the modular coupling of these elements, and to demonstrate that this approach is scalable.'

The Belgian-Israeli team created a DNA-based computational platform that draws on two libraries of nucleic acids, one of which is made up of subunits of DNAzymes. The second library comprises the DNAzymes' substrates.

'We demonstrate that the library of DNAzymes, designed and synthesised by Professor Willner's team, allows for the realisation of a complete ensemble of logic gates which can be used to compute any Boolean function,' explained Françoise Remacle of the University of Liège, who is also the MOLOC project coordinator.

'We also show that [the] dynamic assembly [of these gates] into circuits can be directed by selective inputs. Moreover, the design allows for the amplification of outputs.'

The MOLOC project got underway at the beginning of 2008 and is scheduled to draw to a close at the end of this year. The aim of the initiative is to design and demonstrate the feasibility and advantages of logic circuits in which the basic element is a single molecule (or assemblies of atoms or molecules) acting as a logic circuit. These systems differ from those that use a molecule as a switch.

In addition to the University of Liège and the Hebrew University of Jerusalem, MOLOC's project partners are the Institute of Solid State Research (IFF) at the Forschungszentrum Jülich, the Max Planck Institute for Quantum Optics, the Department of Chemistry at Heinrich-Heine University Düsseldorf, the Institute of Applied Optics at the Technische Universität Darmstadt in Germany, all based in Germany, and the Kavli Institute of Nanoscience at Delft University of Technology in the Netherlands.

For more information, please visit:

University of Liège: www.ulg.ac.be

Nature Nanotechnology: www.nature.com/nnano/index.html

MOLOC project: www.moloc.ulg.ac.be/

Funding for ICT research under FP7: cordis.europa.eu/fp7/ict/

Document Reference: Elbaz, J., et al. (2010) DNA computing circuits using libraries of DNAzyme subunits. Nature Nanotechnology (in press), published online 30 May. DOI: 10.1038/NNANO.2010.88

####

For more information, please click here

Copyright © CORDIS

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project