Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Los Alamos-Argonne partnership will aid understanding of complex materials

Thomas Proffen, left, of Los Alamos National Laboratory, and Peter Chupas and Karena Chapman of Argonne National Laboratory examine the high-energy X-ray beamline 11-ID-B at Argonne's Advanced Photon Source facility.
Thomas Proffen, left, of Los Alamos National Laboratory, and Peter Chupas and Karena Chapman of Argonne National Laboratory examine the high-energy X-ray beamline 11-ID-B at Argonne's Advanced Photon Source facility.

Abstract:
An intimate understanding of complex materials that lie at the heart of pharmaceuticals or even nuclear weapons can occur more quickly and efficiently thanks to an agreement between Los Alamos and Argonne national laboratories.

Los Alamos-Argonne partnership will aid understanding of complex materials

Los Alamos, NM | Posted on May 28th, 2010

Thomas Proffen of the Los Alamos Neutron Science Center's Manuel Lujan Jr. Neutron Scattering Center and Peter Chupas and Karena Chapman of Argonne's Advanced Photo Source have developed an agreement that allows researchers to readily use complementary facilities at both locations. The agreement has created a protocol under which researchers can collect data on the Neutron Powder Diffractometer (NPDF) at the Lujan Center as well as the high-energy X-ray beamline 11-ID-B at Argonne's APS facility and then use specially developed user-friendly software to combine the high-quality X-ray and neutron scattering data.

Together, the two experiments provide "total scattering" data with different scattering weights for each atom type. This allows materials scientists to peer even deeper into the structure and behavior of materials at the atomic level.

Prior to the agreement between the two institutions, scientists needed to present separate proposals for use of each facility; this sometimes meant that researchers collected data from different samples or gathered information at a second facility years after using the first. Now that the agreement is in place, researchers can get combined access to each machine more quickly and easily.

Perhaps even more significant, the agreement increases collaboration between the staff members at each facility, which may lead to improvements in the modeling software and in the techniques used to capture data.

"Complex materials are all around us," said Proffen. "We find them in cell phones, hard drives, pharmaceuticals, and materials of interest to the weapons community. Total scattering is becoming a powerful new characterization tool that can advance our understanding of these complex materials. This initiative may help us someday develop models that allow us to predict the behavior of materials in extreme or specialized environments, or to design materials with desirable properties such as superconductivity at room temperature or designer medicines."

More information about total scattering is available at totalscattering.lanl.gov

####

About Los Alamos National Laboratory
Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, The Babcock & Wilcox Company, and URS for the Department of Energy’s National Nuclear Security Administration.

Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health, and global security concerns.

For more information, please click here

Contacts:
JAMES E. RICKMAN
505-665-9203

Copyright © Los Alamos National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Materials/Metamaterials/Magnetoresistance

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Alliances/Trade associations/Partnerships/Distributorships

Manchester graphene spin-out signs $1billion game-changing deal to help tackle global sustainability challenges: Landmark deal for the commercialisation of graphene April 14th, 2023

Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022

Research partnerships

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project