Home > News > ATLAS from Carl Zeiss Offers New Opportunities in the Nanoscopic Analysis of Large-area Samples
May 26th, 2010
ATLAS from Carl Zeiss Offers New Opportunities in the Nanoscopic Analysis of Large-area Samples
Abstract:
Today, Carl Zeiss launches ATLAS™, a powerful hard- and software package, which, in combination with any scanning electron microscope from Carl Zeiss, enables quick and efficient imaging of large-area specimens with nanometer resolution.
Story:
ATLAS is initially being utilized both in the area of neurological research, e.g. the young field of brain mapping, and for traditional routine tasks in histology and pathology. Here, there is an increasing demand for efficient, cost-effective methods of examining a steadily rising number of specimens with constantly increasing sizes using resolutions in the nanometer range. There as well as in numerous future applications, ATLAS™ will offer users a new degree of productivity.
With suitable specimens, unattended operation can acquire multi-image montages that span extremely large fields of view, permitting capture of regions on the millimeter scale with resolution on the nanometer scale in a handful of hours. The in-built viewer software with integrated zoom function facilitates continous enlargement of the final image from rough overview until nanometer resolution.
The heart of the ATLAS system is an adaptive 16-bit scan generator and dual supersampling signal acquisition system, tightly integrated into the SmartSEM software for microscope control. ATLAS enables acquisition of individual images up to one gigapixel in size (32k x 32k), at up to sixteen bit pixel depth, and calls upon the rich suite of SmartSEM microscope automation features to allow automated acquisition of one or more image montages that may exceed one terapixel in size.
Related News Press |
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Tools
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |