Home > Press > NIST Develops 'Dimmer Switch' for Superconducting Quantum Computing
Colorized micrograph of superconducting circuit used in NIST quantum computing research. The chip combines a quantum bit (pink) for storing quantum information, a quantum bus (green) for transporting information, and a switch (purple) that "tunes" interactions between the other two components. Credit: M.S. Allman/NIST |
Abstract:
Scientists at the National Institute of Standards and Technology (NIST) have developed the first "dimmer switch" for a superconducting circuit linking a quantum bit (qubit) and a quantum bus—promising technologies for storing and transporting information in future quantum computers. The NIST switch is a new type of control device that can "tune" interactions between these components and potentially could speed up the development of a practical quantum computer.
Quantum computers, if they can be built, would use the curious rules of quantum mechanics to solve certain problems that are now intractable, such as breaking today's most widely used data encryption codes, or running simulations of quantum systems that could unlock the secrets of high-temperature superconductors. Unlike many competing systems that store and transport information using the quantum properties of individual atoms, superconducting qubits use a "super flow" of oscillating electrical current to store information in the form of microwave energy. Superconducting quantum devices are fabricated like today's silicon processor chips and may be easy to manufacture at the large scales needed for computation.
As described in a forthcoming paper in Physical Review Letters,* the new NIST switch can reliably tune the interaction strength or rate between the two types of circuits—a qubit and a bus—from 100 megahertz to nearly zero. The advance could enable researchers to flexibly control the interactions between many circuit elements in an intricate network as would be needed in a quantum computer of a practical size.
Other research groups have demonstrated switches for two or three superconducting qubits coupled together, but the NIST switch is the first to produce predictable quantum behavior over time with the controllable exchange of an individual microwave photon (particle of light) between a qubit and a resonant cavity. The resonant cavity serves as what engineers call a "bus"—a channel for moving information from one section of the computer to another. "We have three different elements all working together, coherently (in concert with each other) and without losing a lot of energy," says the CU-Boulder graduate student Michael (Shane) Allman who performed the experiments with NIST physicist Ray Simmonds, the principal investigator.
All three components (qubit, switch, and cavity) were made of aluminum in an overlapping pattern on a sapphire chip (see image). The switch is a radio-frequency SQUID (superconducting quantum interference device), a magnetic field sensor that acts like a tunable transformer. The circuit is created with a voltage pulse that places one unit of energy—a single microwave photon—in the qubit. By tuning a magnetic field applied to the SQUID, scientists can alter the coupling energy or transfer rate of the single photon between the qubit and cavity. The researchers watch this photon slosh back and forth at a rate they can now adjust with a knob.
The switch research was supported in part by the Army Research Office. Simmonds's group previously demonstrated the first superconducting quantum bus between qubits (see "Digital Cable Goes Quantum: NIST Debuts Superconducting Quantum Computing Cable," www.nist.gov/public_affairs/releases/quantum_cable.html, which also describes how the superconducting qubits operate).
* M.S. Allman, F. Altomare, J.D. Whittaker, K. Cicak, D. Li, A. Sirois, J. Strong, J.D. Teufel, R.W. Simmonds. 2010. rf-SQUID-Mediated Coherent Tunable Coupling Between a Superconducting Phase Qubit and a Lumped Element Resonator. Physical Review Letters. Forthcoming.
####
About NIST
The National Institute of Standards and Technology (NIST) is an agency of the U.S. Commerce Department.
For more information, please click here
Contacts:
Laura Ost
303-497-4880
Copyright © NIST
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Quantum Computing
New quantum encoding methods slash circuit complexity in machine learning November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Quantum nanoscience
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024
Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||