Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > First Evidence That Quantum Processes Generate Truly Random Numbers

April 14th, 2010

First Evidence That Quantum Processes Generate Truly Random Numbers

Abstract:
But in the last few years, scientists have found a new source of randomness that cannot be produced by a computer program. This is called algorithmic randomness and it is the gold standard when it comes to the absence of order. The new source of this randomness is the quantum world and comes from exploiting quantum processes such as whether a photon is transmitted or reflected by a semi-silvered mirror.

This ought to produce sequences that can never be created by a computer. But are these sequences measurably different from those produced by computers?

This question is settled today by Cristian Calude at the University of Auckland in New Zealand and a few mates. These guys have carried out the first experimental comparison of randomness generated in these different ways and they've done it on a huge scale, using sequences 2^32 long.

Source:
technologyreview.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Quantum Computing

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project