Home > News > Materials at the nanoscale have zero specific heat
April 5th, 2010
Materials at the nanoscale have zero specific heat
Abstract:
Currently, specific heat at the nanoscale is considered an intensive property having the same value as for macroscopic bodies. The Debye and Einstein macroscopic theories of specific heat including modifications thereof by Raman are generally assumed in simulating heat transfer in nanostructures. See Thumbnail of "Macroscopic Specific Heat at the Nanoscale?" in (link). What this means is the classical oscillators of statistical mechanics all having the same kT energy are used to model specific heat at the nanoscale.
Source:
scienceblog.com
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Quantum nanoscience
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Programmable electron-induced color router array May 14th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |