Home > News > Recent Trends in Dye-Sensitized Solar Cell Technology
March 21st, 2010
Recent Trends in Dye-Sensitized Solar Cell Technology
Abstract:
The very foundation of modern civilization lies on the abundant supply of electrical energy. For the last two centuries, most of our electricity needs have been fulfilled by fossil fuel sources such as coal, natural gas and petroleum. However, the global electricity demand is continuously increasing. The continuous increase in energy demand is forcing our society to search for environmentally clean, sustainable and renewable energy sources.1
Several alternate sources of energy such as wind, solar, hydro and biomass have been explored over the last several decades. Among all these unconventional energy sources, solar energy has emerged as a most practical alternative to conventional fossil-fuel based energy sources. However, even with the continuously increasing interest in solar energy, it is still not able to compete fully with the conventional fossil energy sources because of a number of material challenges. For example, the conventional silicon based solar cells require high purity defect free silicon. The cost of producing such high purity silicon is very high. Because of the high material cost and low energy conversion efficiency, the cost of power produced by these cells is several times more than that produced by conventional sources.
Source:
mynews.in
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Solar/Photovoltaic
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||