Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > Going eight separate ways

February 11th, 2010

Going eight separate ways

Abstract:
Symmetry is at the heart of all physics. Predicting the behavior of a material by studying underlying symmetries is one of the oldest and most powerful theoretical techniques, with quite impressive consequences: the symmetry of time invariance gives rise to energy conservation while rotational symmetry underlies the conservation of angular momentum. What then if symmetry is broken? Broken symmetry often hints at exciting new phenomena such as the emergence of the Higgs boson in particle physics, or ferromagnetism in condensed matter physics.

Very recently, two experimental groups—Yue Zhao, Paul Cadden-Zimansky, Zhigang Jiang, and Philip Kim at Columbia University in the US, reporting in the current issue of Physical Review Letters [1], and Harvard's Benjamin Feldman, Jens Martin, and Amir Yacoby, also in the US [2]—have reported on the eightfold symmetry-breaking of the zero-energy Landau level in bilayer graphene systems (Fig. 1). The Columbia experiment used the typical setup of bilayer graphene on a SiO2 substrate [3] and found that the unusual zero-energy quantum Hall octet, while intact at lower magnetic fields, splits up completely into eight separate Landau levels when exposed to 35 T (generated at the National High Magnetic Field Laboratory in Tallahassee, Florida, and close to the limit of what is currently possible for man-made static magnetic fields). The Harvard group used "suspended graphene," an otherwise identical system, but where additional processing is used to remove the supporting SiO2 substrate [4]. They report that the same symmetry breaking occurs at the more moderate magnetic field of about 3 T.

Source:
The American Physical Society

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Physics

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Finding quantum order in chaos May 17th, 2024

International research team uses wavefunction matching to solve quantum many-body problems: New approach makes calculations with realistic interactions possible May 17th, 2024

Materials/Metamaterials/Magnetoresistance

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Quantum nanoscience

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project