Home > Press > Developing OLED Displays with CRAIC Technologies Microscope Spectrophotometers
![]() |
Abstract:
Organic Light Emitting Diodes (OLED) are used developed for displays. The CRAIC Technologies QDI 302™ microscope spectrophotometer is designed to measure spectra, intensity and color consistency of each of the microscopic pixels in OLED devices.
Organic Light Emitting Diodes (OLED) are being developed for the next generation of displays and light sources. The QDI 302™ microscope spectrophotometer, from CRAIC Technologies, is designed to measure and compare the spectral output, intensity and color consistency of each of the microscopic pixels commonly found in OLED devices.
Organic light emitting diodes (OLED) have an emissive electroluminescent layer that consists of organic molecules in a supporting matrix. For displays, this layer is formed into millions of microscopic pixels in ordered rows and columns. As different organic compounds are used to generate different colors, pixels with different organic compounds can generate different colors for full color, high resolution displays. The biggest advantages of the OLED devices, u nlike the traditional Liquid Crystal Displays (LCD), is that the pixels combine both the light source and the color source. This means that OLED displays are lighter and thinner and use less electricity than an LCD. However, consistency of the intensity and the color of the optical emission across the device is critical. This is where instruments such as the QDI 302™ spectrophotometer for microscopes are used.
The QDI 302™ is a spectrophotometer that is designed to add to the open photoport of a microscope or probe station. It allows the user to acquire images and acquire spectra of microscopic sample areas quickly and rapidly. When added to the appropriate microscope or probe station, the QDI 302™ can be used to measure the color and intensity of each pixel of a OLED display. Pixels can then be compared with one another for consistency or maps of both the intensity and color can be
generated for each device. And as instruments such as the QDI 302™ can acquire spectra on the order of a few milliseconds, entire OLED displays can be mapped quickly and accurately. This will ensure the consistency of both color and intensity across the entire device as well as from device to device.
For more information about the microspectral analysis of OLED displays with CRAIC Technologies, please visit:
www.microspectra.com/component/content/article/52-craictech/148-oled-metrology
####
About CRAIC Technologies
CRAIC Technologies, Inc. is a global technology leader focused on developing technology and methodologies for UV-visible-NIR microscopy and microspectroscopy. CRAIC Technologies creates innovative solutions, along with the very best in customer support, by listening to our customers and implementing developments that integrate operational excellence and technologic expertise. CRAIC Technologies provides solutions for customers in the forensic sciences, biology, health sciences, semiconductor, geology, nanotechnology and materials science markets whose applications demand accuracy, precision, speed and the best in expert customer support.
For more information, please click here
Contacts:
CRAIC Technologies, Inc.
www.microspectra.com
+1-310-573-8180
Copyright © CRAIC Technologies
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Display technology/LEDs/SS Lighting/OLEDs
Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024
New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Tools
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |