Home > Press > Researchers Develop New Tool for Gene Delivery
Electron Micrograph of PEG-POD DNA complexes indicates that each nanoparticle is approximately 136 nm in size. Credit: courtesy of Tufts University School of Medicine. |
Abstract:
Researchers at Tufts University School of Medicine and the Sackler School of Graduate Biomedical Sciences at Tufts have developed a new tool for gene therapy that significantly increases gene delivery to cells in the retina compared to other carriers and DNA alone, according to a study published in the January issue of The Journal of Gene Medicine.
The tool, a peptide called PEG-POD, provides a vehicle for therapeutic genes and may help researchers develop therapies for degenerative eye disorders such as retinitis pigmentosa and age-related macular degeneration.
"For the first time, we have demonstrated an efficient way to transfer DNA into cells without using a virus, currently the most common means of DNA delivery. Many non-viral vectors for gene therapy have been developed but few, if any, work in post-mitotic tissues such as the retina and brain. Identifying effective carriers like PEG-POD brings us closer to gene therapy to protect the retinal cells from degeneration," said senior author Rajendra Kumar-Singh, PhD, associate professor of ophthalmology and adjunct associate professor of neuroscience at Tufts University School of Medicine (TUSM) and member of the genetics; neuroscience; and cell, molecular, and developmental biology program faculties at the Sackler School of Graduate Biomedical Sciences at Tufts.
Safe and effective delivery of therapeutic genes has been a major obstacle in gene therapy research. Deactivated viruses have frequently been used, but concerns about the safety of this method have left scientists seeking new ways to get therapeutic genes into cells.
"We think the level of gene expression seen with PEG-POD may be enough to protect the retina from degeneration, slowing the progression of eye disorders and we have preliminary evidence that this is indeed the case," said co-author Siobhan Cashman, PhD, research assistant professor in the department of ophthalmology at TUSM and member of Kumar-Singh's lab.
"What makes PEG-POD especially promising is that it will likely have applications beyond the retina. Because PEG-POD protects DNA from damage in the bloodstream, it may pave the way for gene therapy treatments that can be administered through an IV and directed to many other parts of the body," said Kumar-Singh.
Kumar-Singh and colleagues used an in vivo model to compare the effectiveness of PEG-POD with two other carriers (PEG-TAT and PEG-CK30) and a control (injections of DNA alone).
"Gene expression in specimens injected with PEG-POD was 215 times greater than the control. While all three carriers delivered DNA to the retinal cells, PEG-POD was by far the most effective," said first author Sarah Parker Read, an MD/PhD candidate at TUSM and Sackler and member of Kumar-Singh's lab.
Age-related macular degeneration, which results in a loss of sharp, central vision, is the number one cause of vision loss in Americans age 60 and older. Retinitis pigmentosa, an inherited condition resulting in retinal damage, affects approximately 1 in 4,000 individuals in the United States.
This study was supported by grants from the National Eye Institute of the National Institutes of Health, the Foundation for Fighting Blindness, The Ellison Foundation, The Virginia B. Smith Trust, the Lions Eye Foundation, and Research to Prevent Blindness. Sarah Parker Read is part of the Sackler/TUSM Medical Scientist Training Program, which is funded by the National Institute of General Medical Sciences, part of the National Institutes of Health.
Read SP, Cashman SM, Kumar-Singh R. The Journal of Gene Medicine. 2010 (January). 12(1): 86-96. "A poly(ethylene) glycolylated peptide for ocular delivery compacts DNA into nanoparticles for gene delivery to post-mitotic tissues in vivo." Doi: 10.1002/jgm.1415
####
About Tufts University
Tufts University School of Medicine and the Sackler School of Graduate Biomedical Sciences at Tufts University are international leaders in innovative medical education and advanced research. The School of Medicine and the Sackler School are renowned for excellence in education in general medicine, biomedical sciences, special combined degree programs in business, health management, public health, bioengineering and international relations, as well as basic and clinical research at the cellular and molecular level.
For more information, please click here
Contacts:
Siobhan Gallagher
617-636-6586
Copyright © Tufts University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Atomic force microscopy in 3D July 5th, 2024
Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024
Nanobiotechnology
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||