Home > Press > Nanomaterials get to the heart of the matter
![]() |
From left, Sarah Baxter, Cathy Murphy, and Edie Goldsmith |
Abstract:
Having a heart of gold could have new meaning if research led by a team of USC scientists hits paydirt.
The scientists are investigating how injections of nano-sized rods of gold might improve the function of faulty heart valves while eliminating the need for corrective surgery.
"Cardiac valves can become too stiff or too floppy and the heart has to work harder," said Edie Goldsmith, an associate professor in the School of Medicine's Department of Cell Biology and Anatomy. "Valve replacement surgery is an option, but we want to see if we can alter the physical structure and behavior of faulty valves with nanomaterials only."
Goldsmith and mechanical engineering associate professor Sarah Baxter are collaborating with former University chemistry professor Cathy Murphy and Clemson University bioengineering professor Delphine Dean, supported by a two-year exploratory grant from the National Institutes of Health's Heart, Lung and BloodInstitute.
"We've learned that gold nanomaterials like to associate with collagen, a structural protein," Goldsmith said. "There is too much collagen in stiff valves and not enough in floppy valves. We think that the nanomaterials can alter the mechanical properties of the collagen in beneficial ways."
The scientists have found they can modify the nano-sized gold particles with polymers creating a positive or negative surface charge that affect collagen assembly. When exposed to the nanomaterials, collagen production by fibroblasts is altered as is the phenotype of the cells.
"We want to measure the mechanical properties of collagen-fibroblast-nanoparticle constructs to see how the nanomaterials might create positive changes in the cardiac valves," Goldsmith said.
The implications of their research go beyond cardiac valve repair: the researchers plan to test the use of nanomaterials in wound healing and cancer.
"We also want to see if the nanomaterials could be used to manipulate the matrix around a tumor," she said. "You could then isolate the tumor and keep the cancer cells from spreading."
####
For more information, please click here
Contacts:
Office of Media Relations
803-777-5400
Copyright © University of South Carolina
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Possible Futures
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Nanomedicine
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Atomic force microscopy in 3D July 5th, 2024
Nanobiotechnology
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |