Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Microwave fridges and nano diving boards

Abstract:
NPL scientists are paving the way for highly accurate measurement at the nano-scale and beyond, by being the first team in the world to develop a tiny microwave-powered room-temperature fridge.

Microwave fridges and nano diving boards

UK | Posted on January 21st, 2010

This microwave 'fridge' is unlike the one in your kitchen. Rather than chilling pints of milk, it cools tiny devices called 'micro' or 'nano-scale mechanical resonators' to a decidedly frosty -170 ºC. It is important to cool down these devices, which look and behave like tiny diving boards (the simplest type of mechanical resonator, with a well-defined resonant frequency, like a tuning fork), so that they can be measured accurately.

Heat is a killer when trying to make an accurate measurement. Any material that is warmer than absolute zero (-273 ºC) will have atoms moving around inside it, and this makes it very difficult to measure accurately (just as it would be very difficult to weigh a person who was jumping around on the scales).

Now imagine how much easier it would be to weigh the person if they were standing still - this is effectively what NPL has achieved. We have developed a technique that selectively cools down just the property of a sample that needs to be measured. This selective cooling saves an enormous amount of energy, as it means you don't have to waste energy cooling an entire sample when you are only interested in cooling and measuring a tiny fraction of it.

This technique will be of great use in nano-scale and quantum physics as it allows scientists to detect tiny changes in physical factors such as mass, force and displacement by measuring accurately changes in the resonant frequency of the diving board. This means it can be used in applications where highly sensitive detection is needed, such as bio-analytical screening for viruses (by catching a virus on the diving board!). In the longer term this technique could lead to development of even more sensitive 'quantum' diving boards which could be used to examine the really big questions of quantum physics, such as "At what scale do quantum effects break down?".

For more information on this research read 'Excitation, detection, and passive cooling of a micromechanical cantilever using near-field of a microwave resonator', published in the journal Applied Physics Letters 95, 113501 (2009) doi:10.1063/1.3224912 on 16 September 2009.

For more information, please contact Dr Ling Hao:

resource.npl.co.uk/expertise/search.php?name=Ling+Hao

Find out more about NPL's work in Quantum Phenomena:

www.npl.co.uk/quantum-phenomena/

####

About National Physical Laboratory
The National Physical Laboratory (NPL) is one of the UK's leading science and research facilities. It is a world-leading centre of excellence in developing and applying the most accurate standards, science and technology available.

For more information, please click here

Contacts:
National Physical Laboratory
Hampton Road
Teddington
Middlesex
TW11 0LW


Telephone: +44 20 8977 3222 (Switchboard)
Facsimile: +44 20 8614 0446

Copyright © National Physical Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Possible Futures

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Tools

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

Nanobiotechnology

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Quantum nanoscience

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Researchers succeed in controlling quantum states in a new energy range December 13th, 2024

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project