Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Exclusive licence for a new generation of optical microscopes

Abstract:
Max Planck Innovation grants rights for developing new nanoscopic method to Leica Microsystems

Exclusive licence for a new generation of optical microscopes

Munich | Posted on January 14th, 2010

Max Planck Innovation, the technology transfer organization of the Max Planck Society, grants Leica Microsystems, Wetzlar, an exclusive license for implementing the latest generation of optical microscopes with a resolution far below the diffraction limit (nanoscopes). This innovative optical nanoscopy, named GSDIM (ground state depletion microscopy followed by individual molecule return), achieves image resolutions in the nanometer range - even in conventional wide field microscopes. GSDIM was developed by Professor Stefan Hell, director at the Max Planck Institute for Biophysical Chemistry in Göttingen, Germany, and his team.

True-to-detail imaging of the spatial arrangement of proteins and other biomolecules in cells and observing molecular processes - GSDIM makes this possible for researchers due to resolutions beyond the diffraction limit. The more insight science gains into these basic processes of life, the better it can find the causes of previously incurable diseases and develop suitable therapies.

One of the strengths of GSDIM is that it uses conventional fluorescence markers to image proteins or other biomolecules within the cells with sharpness down to a few nanometers. This includes fluorophores, which are routinely used in biomedical work, such as fluorescent proteins and rhodamines.

With GSDIM, the fluorescent molecules in the specimen are almost completely switched off using laser light. However, individual molecules spontaneously return to the fluorescent state, while their neighbours remain non-illuminating. In this way, the signals of individual molecules can be acquired sequentially using a highly sensitive camera system and their spatial position in the specimen can be measured and stored. An extremely high-resolution image can then be created from the position of many thousands of molecules. This enables cell components that are situated very close to one another and cannot be resolved using conventional wide field fluorescence microscopy to be spatially separated and sharply reproduced in an image.

"We are glad to continue the already very fruitful cooperation with Prof. Hell and the Max Planck Institute with this groundbreaking and promising technology," explains Dr. Stefan Traeger, head of the Life Science Division at Leica Microsystems. "With GSDIM technology, we have the potential of further expanding our innovation leadership in the market for super-resolution light microscopy and nanoscopy. We want to be able to offer maximum-resolution microscopy in the future to an even wider group of users in the life sciences." Prof. Stefan Hell explains: "Leica Microsystems was by far the first company to take light microscopy's historical breakthrough of the diffraction limit and implement this in products. We are glad that with GSDIM, Leica is making available another nanoscopic method - which complements STED microscopy - worldwide."

Hell has already invented the 4Pi and STED technologies, which achieve ultra-high resolutions in the nanoscale. For the Leica TCS 4PI Microscope, Leica Microsystems received the German Business Innovation Award in 2005; for STED technology, Prof. Hell was awarded the German Future Prize by Federal President Dr. Horst Köhler in 2006.

####

About Max Planck Innovation
Max Planck Innovation advises and supports scientists of the Max Planck Society in evaluating inventions and filing patent applications. Max Planck Innovation markets patents and technologies to industry and coaches founders of new companies based on research results from Max Planck Institutes. Every year, Max Planck Innovation evaluates about 150 inventions, of which about half lead to the filing of a patent application. Since 2000, Max Planck Innovation advised about 50 spin-offs, closed more than 700 license deals and generated proceeds of more than 140 million Euros for inventors, institutes and the Max Planck Society. As a result, Max Planck Innovation is among the world's most successful technology transfer organizations.

For more information, please click here

Contacts:
Max Planck Society
for the Advancement of Science
Press and Public Relations Department

Hofgartenstrasse 8
D-80539 Munich
Germany

PO Box 10 10 62
D-80084 Munich

Phone: +49-89-2108-1276
Fax: +49-89-2108-1207



Head of scientific communications:
Dr. Christina Beck (-1275)

Press Officer / Head of corporate communications:
Dr. Felicitas von Aretin (-1227)

Executive Editor:
Barbara Abrell (-1416)

Copyright © Max Planck Innovation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Tools

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project