Home > Press > Researchers are on the path to creating nano-MRI images
A schematic of John Marohn's scanned-probe electron spin resonance experiments, with the oscillating cantilever in the middle and the nickel tip that was attached by hand. Eric Moore |
Abstract:
In biochemistry, shape is everything. Because of the shape of their binding sites, hormones can attach to cell membranes to send signals inside, and viruses can open up paths to invade. But understanding the structure of complex molecules, sometimes made of tens of thousands of atoms, is no easy task. Existing microscopes, even the world's best electron microscopes, can't resolve atomic details of organic material.
Researchers at Cornell are changing that: They are devising methods to detect the magnetic fields of individual electrons and atomic nuclei, which they hope to use to make 3-D images -- a nanoscale version of magnetic resonance imaging. Their new approach can detect a tiny force called electron spin to a sensitivity scale of about 400 electrons.
Their breakthrough is reported in the Dec. 14 online issue of Proceedings of the National Academy of Sciences.
"There is no more longstanding a problem than imaging the structure of membrane proteins," said John Marohn, associate professor of chemistry, who is leading the research and has been working on the problem for nearly a decade. "There is no general approach, and it is backbreaking work." Marohn belongs to a growing community of scientists doing single-molecule imaging, and in August Cornell hosted a conference on the topic.
At the heart of Marohn's research is the idea that electrons, protons and neutrons create a magnetic field, also called a magnetic moment. When placed next to a stronger magnetic field, all the little "magnets" -- electrons or neutrons and protons in the nuclei -- line up. Applying a radiofrequency field tuned to the electron or nucleus causes the magnetic moment to spin off axis like a wobbly top, a behavior called precession.
A medical MRI machine detects voltage induced in a coil by the precession of, typically, a thousand billion hydrogen atoms, which creates enough resolution for 3-D imaging of body parts. Marohn and colleagues are trying to make an instrument sensitive enough to feel the force of a single electron or nucleus in a protein.
In their paper, they describe their new approach, which involves detecting the spin of electrons in a molecule called a nitroxide -- rare because it contains a radical, or an unpaired electron. Their technique opens up the possibility of imaging, at sub-nanometer resolution, the locations of nitroxide "labels" attached to individual protein molecules.
By creating a sample of nitroxide molecules dissolved in a thin-film polymer and bringing the sample close to a 4-micron nickel magnet attached to a 350-nanometer silicon cantilever, they can detect the electron spin by measuring the frequency of the cantilever as it wobbles, like a diving board. The cantilever is similar to those used in scanning probe microscopy, a type of imaging that involves a cantilever scanning a surface and recording the probe-surface interactions.
To improve their frequency readouts and get more accurate measurements, the group must learn, among others things, how to make their magnets smaller, Marohn said.
"The dream is to take that signal, run it through some sort of complicated algorithm, and get a picture," Marohn said.
The paper's first author is graduate student Eric Moore. The research was funded by the National Institutes of Health and the Army Research Office's Multi-University Research Initiative.
####
About Cornell University
Once called "the first American university" by educational historian Frederick Rudolph, Cornell University represents a distinctive mix of eminent scholarship and democratic ideals. Adding practical subjects to the classics and admitting qualified students regardless of nationality, race, social circumstance, gender, or religion was quite a departure when Cornell was founded in 1865.
Today's Cornell reflects this heritage of egalitarian excellence. It is home to the nation's first colleges devoted to hotel administration, industrial and labor relations, and veterinary medicine. Both a private university and the land-grant institution of New York State, Cornell University is the most educationally diverse member of the Ivy League.
On the Ithaca campus alone nearly 20,000 students representing every state and 120 countries choose from among 4,000 courses in 11 undergraduate, graduate, and professional schools. Many undergraduates participate in a wide range of interdisciplinary programs, play meaningful roles in original research, and study in Cornell programs in Washington, New York City, and the world over.
For more information, please click here
Contacts:
Media Contact:
Blaine Friedlander
(607) 254-8093
Cornell Chronicle:
Anne Ju
(607) 255-9735
Copyright © Cornell University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Tools
Turning up the signal November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||