Home > Press > Molecular Freight
A valuable cargo: Polysaccharides (-1,3-glucans) act as a host compound to various nanomaterial cargoes such as single-walled carbon nanotubes. The cargo packed in the host container is transported on the rail (F-actin) by wheels and a molecular motor (myosin) attached to the container (see picture). This artificial system is inspired by a container transportation system based on the motion of vesicles in biological cells. Copyright © Wiley InterScience |
Abstract:
Synthetic nanoscale transport system modeled on nature
Just like our roads, there is a lot of traffic within the cells in our bodies, because cell components, messenger molecules, and enzymes must also be brought to the right places in the cell. One of these transportation systems functions like a kind of railway: a system of molecular tracks is used to transport vesicles and their contents to their target destinations. In imitation of this natural "cargo transport", Japanese researchers have developed a synthetic molecular transport system. The scientists, led by Youichi Tsuchiya and Seiji Shinkai, report in the journal Angewandte Chemie that this could form the basis for the development of a method for transporting therapeutic genes into cell nuclei.
The cellular rail system uses actin filaments for tracks. Actin filaments are strong strands of protein that form a network inside a cell. Acting as both motor proteins and wheels are myosin molecules, which move along the tracks. The vesicle being transported hangs on to the tail end of the myosin. The myosin head consists of ATPase, an enzyme that degrades ATP. ATP is cellular fuel; its decomposition releases energy. In the process of splitting the ATP, the angle of the myosin head attached to the actin filament changes, which causes the myosin to move along the filament like a wheel on a track, bringing its cargo along for the ride.
The researchers also incorporated actin, myosin, and ATP as components for their synthetic transport system. For their container, they chose schizophyllan, a triple-stranded helical polysaccharide from fungi. In certain solvents the helix unravels; when placed back in water, the polysaccharide twists back up into a helix. In this process, it can wrap around large molecules or nanoparticles, packaging them up. In their study, the researchers loaded these molecular containers with carbon nanotubes. They used cobalt ions to dock on several myosin units, and these wheels did indeed move the tiny freight train along the actin track. With an average speed of about 95 nm/s, the freight cars crossed the amazing distance of about 5 µm.
Transport along cellular actin tracks always moves in only one direction. The filaments are bound to each other at junctions, creating a transportation network that also allows for changes in direction within the cell. The synthetic molecular freight trains can also change from one filament to another at junctions in the network. Because the direction of the actin track leads into the cell nucleus, the artificial transport system may be useful in gene therapy, because it could wrap up the therapeutic genes and carry them into the cellular nucleus.
Author: Seiji Shinkai, ISIT, Fukuoka (Japan),
Title: A Polysaccharide-Based Container Transportation System Powered by Molecular Motors
Angewandte Chemie International Edition, Permalink: dx.doi.org/10.1002/anie.200904909
####
For more information, please click here
Contacts:
Editorial office
Amy Molnar (US)
Jennifer Beal (UK)
Alina Boey (Asia)
Copyright © Angewandte Chemie
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Nanobiotechnology
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||