Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Molecular Freight

A valuable cargo: Polysaccharides (-1,3-glucans) act as a host compound to various nanomaterial cargoes such as single-walled carbon nanotubes. The cargo packed in the host container is transported on the rail (F-actin) by wheels and a molecular motor (myosin) attached to the container (see picture). This artificial system is inspired by a container transportation system based on the motion of vesicles in biological cells. Copyright © Wiley InterScience
A valuable cargo: Polysaccharides (-1,3-glucans) act as a host compound to various nanomaterial cargoes such as single-walled carbon nanotubes. The cargo packed in the host container is transported on the rail (F-actin) by wheels and a molecular motor (myosin) attached to the container (see picture). This artificial system is inspired by a container transportation system based on the motion of vesicles in biological cells. Copyright © Wiley InterScience

Abstract:
Synthetic nanoscale transport system modeled on nature

Molecular Freight

Japan | Posted on December 21st, 2009

Just like our roads, there is a lot of traffic within the cells in our bodies, because cell components, messenger molecules, and enzymes must also be brought to the right places in the cell. One of these transportation systems functions like a kind of railway: a system of molecular tracks is used to transport vesicles and their contents to their target destinations. In imitation of this natural "cargo transport", Japanese researchers have developed a synthetic molecular transport system. The scientists, led by Youichi Tsuchiya and Seiji Shinkai, report in the journal Angewandte Chemie that this could form the basis for the development of a method for transporting therapeutic genes into cell nuclei.

The cellular rail system uses actin filaments for tracks. Actin filaments are strong strands of protein that form a network inside a cell. Acting as both motor proteins and wheels are myosin molecules, which move along the tracks. The vesicle being transported hangs on to the tail end of the myosin. The myosin head consists of ATPase, an enzyme that degrades ATP. ATP is cellular fuel; its decomposition releases energy. In the process of splitting the ATP, the angle of the myosin head attached to the actin filament changes, which causes the myosin to move along the filament like a wheel on a track, bringing its cargo along for the ride.

The researchers also incorporated actin, myosin, and ATP as components for their synthetic transport system. For their container, they chose schizophyllan, a triple-stranded helical polysaccharide from fungi. In certain solvents the helix unravels; when placed back in water, the polysaccharide twists back up into a helix. In this process, it can wrap around large molecules or nanoparticles, packaging them up. In their study, the researchers loaded these molecular containers with carbon nanotubes. They used cobalt ions to dock on several myosin units, and these wheels did indeed move the tiny freight train along the actin track. With an average speed of about 95 nm/s, the freight cars crossed the amazing distance of about 5 µm.

Transport along cellular actin tracks always moves in only one direction. The filaments are bound to each other at junctions, creating a transportation network that also allows for changes in direction within the cell. The synthetic molecular freight trains can also change from one filament to another at junctions in the network. Because the direction of the actin track leads into the cell nucleus, the artificial transport system may be useful in gene therapy, because it could wrap up the therapeutic genes and carry them into the cellular nucleus.


Author: Seiji Shinkai, ISIT, Fukuoka (Japan),

Title: A Polysaccharide-Based Container Transportation System Powered by Molecular Motors

Angewandte Chemie International Edition, Permalink: dx.doi.org/10.1002/anie.200904909

####

For more information, please click here

Contacts:
Editorial office


Amy Molnar (US)


Jennifer Beal (UK)


Alina Boey (Asia)

Copyright © Angewandte Chemie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Nanomedicine

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Nanobiotechnology

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025

Low-cost formulation reduces dose and increases efficacy of drug against worms: Praziquantel, usually administered in large tablets, is the only anthelmintic available on the market. New form of presentation uses nanotechnology and facilitates use by children and pets May 16th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project