Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Tracking new cancer-killing particles with MRI

Abstract:
Nanoparticle could allow diagnosis, treatment in one visit

Tracking new cancer-killing particles with MRI

Houston, TX | Posted on December 14th, 2009

Researchers at Rice University and Baylor College of Medicine (BCM) have created a single nanoparticle that can be tracked in real time with MRI as it homes in on cancer cells, tags them with a fluorescent dye and kills them with heat. The all-in-one particle is one of the first examples from a growing field called "theranostics" that develops technologies physicians can use to diagnose and treat diseases in a single procedure.

The research is available online in the journal Advanced Functional Materials. Tests so far involve laboratory cell cultures, but the researchers said MRI tracking will be particularly advantageous as they move toward tests in animals and people.

"Some of the most essential questions in nanomedicine today are about biodistribution -- where particles go inside the body and how they get there," said study co-author Naomi Halas. "Noninvasive tests for biodistribution will be enormously useful on the path to FDA approval, and this technique -- adding MRI functionality to the particle you're testing and using for therapy -- is a very promising way of doing this."

Halas, Rice's Stanley C. Moore Professor in Electrical and Computer Engineering and professor of chemistry and biomedical engineering, is a pioneer in nanomedicine. The all-in-one particles are based on nanoshells -- particles she invented in the 1990s that are currently in human clinical trials for cancer treatment. Nanoshells harvest laser light that would normally pass harmlessly through the body and convert it into tumor-killing heat.

In designing the new particle, Halas partnered with Amit Joshi, assistant professor in BCM's Division of Molecular Imaging, to modify nanoshells by adding a fluorescent dye that glows when struck by near-infrared (NIR) light. NIR light is invisible and harmless, so NIR imaging could provide doctors with a means of diagnosing diseases without surgery.

In studying ways to attach the dye, Halas' graduate student, Rizia Bardhan, found that dye molecules emitted 40-50 times more light if a tiny gap was left between them and the surface of the nanoshell. The gap was just a few nanometers wide, but rather than waste the space, Bardhan inserted a layer of iron oxide that would be detectable with MRI. The researchers also attached an antibody that lets the particles bind to the surface of breast and ovarian cancer cells.

In the lab, the team tracked the fluorescent particles and confirmed that they targeted cancer cells and destroyed them with heat. Joshi said the next step will be to destroy whole tumors in live animals. He estimates that testing in humans is at least two years away, but the ultimate goal is a system where a patient gets a shot containing nanoparticles with antibodies that are tailored for the patient's cancer. Using NIR imaging, MRI or a combination of the two, doctors would observe the particles' progress through the body, identify areas where tumors exist and then kill them with heat.

"This particle provides four options -- two for imaging and two for therapy," Joshi said. "We envision this as a platform technology that will present practitioners with a choice of options for directed treatment."

Eventually, Joshi said, he hopes to develop specific versions of the particles that can attack cancer at different stages, particularly early stage cancer, which is difficult to diagnose and treat with current technology. The researchers also expect to use different antibody labels to target specific forms of the disease. Halas said the team has been careful to choose components that are either already approved for medical use or are already in clinical trials.

"What's nice is that every single component of this has been approved or is on a path toward FDA approval," Halas said. "We're putting together components that all have good, proven track records."

Bardhan and BCM postdoctoral researcher Wenxue Chen are co-primary authors of the paper. Additional Rice co-authors include Emilia Morosan, assistant professor of physics and astronomy, and graduate students Ryan Huschka and Liang Zhao. Additional BCM co-authors include Robia Pautler, assistant professor of neuroscience and radiology, postdoctoral researcher Marc Bartels and graduate student Carlos Perez-Torres.

The research was sponsored by the Air Force Office of Scientific Research, the Welch Foundation and the Department of Defense's Multidisciplinary University Research Initiative.

View the paper at tinyurl.com/nanocomplex.

####

About Rice University
Rice University and Baylor College of Medicine (BCM) have been in intensive discussions over the past year about the possibility of a merger -- a move that would give Rice a respected medical school and boost its reputation as a premier research university, give Baylor a strong, respected university partner and give Houston the best of a combination of both top-ranked institutions.

For more information, please click here

Contacts:
Jade Boyd
Rice University
713-348-6778


Graciela Gutierrez
Baylor College of Medicine
713-798-4710

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project