Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Cell biology on nanoporous UltraSM® membranes

Abstract:
Our pure silicon nanoporous UltraSM® membranes are not only useful for electron microscopy, but also cell biology. In many studies of cell biology, one is interested in understanding how two cell populations interact or affect one another.

Cell biology on nanoporous UltraSM® membranes

Rochester, NY | Posted on November 21st, 2009

This is important in studies of developmental biology, stem cell research as well as tissue and artifical organ engineering. Conventional materials used for co-culture studies consist of thick polymeric membranes that can trap low abundance short-distance signaling molecules that cells use to communicate. SiMPore's nanoporous nanometer-thick membrane is ideal for studying two cell populations that are physically separated, but closely enough to easily communicate. Physical separation is important in many cellular studies where one cell type is harvested and isolated after co-culture. The figure above shows this ideal co-culture environment.

To demonstrate the thinness and transparency of our UltraSM® membranes, we plated human white blood cells on the top and bottom surface of the membrane. In imaging the cells, we focused from beneath the membrane, to membrane height and then above the membrane. Unlike traditional co-culture membranes, the 15 nm thick UltraSM® membrane is invisible and does not degrade the image quality of the cells on the top.

SiMPore and our academic partners are currently using UltraSM® membranes in additional formats to study everything from cell-cell communication to investigating improved drug permeability assays and even developing tissue engineering platforms. If you would like to learn more or work with us towards developing a better co-culture platform, feel free to contact me:

####

About SiMPore
SiMPore is a nanotechnology materials company based in Rochester, NY developing and commercializing products for materials and life sciences communities.

For more information, please click here

Contacts:
SiMPore Inc.
150 Lucius Gordon Dr.
Suite 100
West Henrietta, NY 14586

888-249-2935

Copyright © SiMPore

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Products

Spectradyne Partners with Particle Technology Labs for Measurement Services December 6th, 2018

Mode-Changing MEMS Accelerometer from STMicroelectronics Combines High Measurement Resolution and Ultra-Low Power for Industrial Applications November 7th, 2018

Fat-Repellent Nanolayers Can Make Oven Cleaning Easier October 17th, 2018

Aculon, Inc. Enters into Strategic Partnership Agreement with Henkel Corporation to Supply Key Mobile Device Manufacturers with NanoProof® PCB Waterproof Technology October 17th, 2018

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Tools

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

Nanobiotechnology

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project