Home > Press > When It Comes to Drug Delivery, Size Matters
![]() |
Abstract:
One of the great promises of nanotechnologies lies in its ability to create drug-containing nanoparticles decorated with targeting molecules that recognize and bind to cancer cells, providing drug delivery only at the site of the targeted cells. Such site-specific drug delivery would not only boost the cancer-killing activity of a drug payload but also reduce potential side effects by greatly restricting or even eliminating the amount of drug reaching healthy tissue.
It turns out, though, that not all targeting agent-nanoparticle combinations are able to reach and enter their targets with equal effectiveness. To help bring some rationality to the process of designing targeted drug delivery agents, K. Dane Wittrup, Ph.D., and graduate student Micheal Schmidt of the Massachusetts Institute of Technology have developed a mathematical model that predicts the magnitude and specificity of tumor uptake of drug delivery vehicles ranging in size from small peptides to large liposomes. This work was published in the journal Molecular Cancer Therapeutics.
The model developed by the Schmidt and Wittrup, who is a member of the MIT-Harvard Center of Cancer Nanotechnology Excellence, accounts for the size of a particular drug delivery agent and a variety of easily measured properties, including how readily it crosses biological barriers and how tightly it binds to a target in test tube experiments. The researchers note that despite the simplicity of their model, it accurately predicts the behavior of HER2-targeted constructs in a mouse model of cancer and of CEA-targeted constructs in humans. In fact, it appears that size and target affinity account for most of the variability in tumor uptake.
One interesting prediction that the model makes is that large constructs, such as nanoparticles, and small ones, including targeting peptides, will deliver more drug into a tumor than will medium constructs, such as engineered antibody fragments. However, the model also predicts that delivery to tumors by nanoparticles over 50 nanometers in diameter will not improve much when targeting agents are aded to the nanoparticles.
This work, which is detailed in a paper titled, "A modeling analysis of the effects of molecular size and binding affinity on tumor targeting," was supported by the NCI Alliance for Nanotechnology in Cancer, a comprehensive initiative designed to accelerate the application of nanotechnology to the prevention, diagnosis, and treatment of cancer. An abstract of this paper is available at the journal's Web site.
####
About NCI Alliance for Nanotechnology in Cancer
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.
The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.
Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.
For more information, please click here
Copyright © NCI Alliance for Nanotechnology in Cancer
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Possible Futures
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Nanomedicine
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Nanobiotechnology
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |