Home > Press > 3-D Nanostructures Capture Rare Tumor Cells in Blood
Abstract:
Perhaps the earliest sign that cancer is starting to spread is the appearance of so-called circulating tumor cells, or CTCs, in the blood stream. These are the forward army of a metastatic tumor, the cells that escape from the primary tumor and colonize other organs in the body. Having a fast, inexpensive method for capturing these rare cells from human blood could provide valuable information that would likely improve therapy, but current CTC assays are not quite up to this task.
That situation may soon change. In a report published in the journal Angewandte Chemie International Edition, a research team at the California Institute of Technology's NanoSystems Biology Cancer Center, led by Hsian-Rong Tseng, Ph.D., describes a device made of millions of nanoscale silicon pillars that gently captured over 40% of the CTCs added to samples of human blood. The capture process takes a mere 45 minutes and leaves up to 90% of the trapped cells alive for further analysis.
Tseng and his colleagues prepared their device using the standard lithographic tools developed for making computer chips. After creating a forest of nanopillars on a silicon wafer, the investigators then coat the surface of the pillars with an antibody that recognizes a molecule on the surface of CTCs known as EpCAM, or epithelial-cell adhesion molecule. EpCAM plays a role in helping CTCs stick to the lining of blood vessels, enabling these metastatic cells to escape the blood stream and eventually colonize organs such as the liver and bone. When CTCs are applied to the device, they respond to the presence of the EpCAM antibody by sending out hair-like projections that appear to interact strongly with the silicon nanopillars and enhance the CTC capture efficiency. In contrast, CTCs captured on a flat silicon structure do not produce these projections.
This work, which is detailed in a paper titled, "Three-Dimensional Nanostructured Substrates toward Efficient Capture of Circulating Tumor Cells," was supported by the NCI Alliance for Nanotechnology in Cancer, a comprehensive initiative designed to accelerate the application of nanotechnology to the prevention, diagnosis, and treatment of cancer. Investigators from MagArray Inc., also participated in this study. An abstract of this paper is available at the journal's Web site.
####
About NCI Alliance for Nanotechnology in Cancer
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.
The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.
Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.
For more information, please click here
Copyright © NCI Alliance for Nanotechnology in Cancer
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Nanobiotechnology
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||