Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researcher works toward making biological imaging 1,000 times faster with stimulus grant

Warren Zipfel
Warren Zipfel

Abstract:
Fluorescence lifetime imaging is a useful but relatively complex technique for probing the local microenvironment of a fluorescent molecule. The method can be used to help determine biochemical makeup of body tissues or measure distances between molecules on the nanometer scale.

With a new grant of more than $675,000 from the National Science Foundation funded by the American Reinvestment and Recovery Act (ARRA), Warren Zipfel '87, Ph.D. '93, associate professor of biomedical engineering, is working to make fluorescence lifetime imaging more efficient and simpler to implement.

Researcher works toward making biological imaging 1,000 times faster with stimulus grant

Ithaca, NY | Posted on November 17th, 2009

"I hope this will become a common mode of fluorescence imaging," Zipfel said.

The technique works by using fluorescent dyes to tag biological molecules of interest. These fluorophores absorb light from a pulsed laser, which puts them into a higher energy state, after which they emit light of a different wavelength. By measuring the "fluorescence lifetime" -- the time between the absorption of the light and the emission of the fluorescence -- scientists can gain information about the local environment the molecule resides in.

Fluorescence lifetime is commonly measured by time-correlated single photon counting (TCSPC), a method that, Zipfel says, "although is highly accurate, can be too slow for practical fluorescence imaging use."

With the new method and instrument his group is developing, Zipfel predicts that he will be able to collect images as much as 1,000 times faster than with TCSPC.

Zipfel also hopes that this new method will be useful to image the oxygen concentrations in and around tumors by using the method to image the phosphoresce lifetimes of oxygen sensitive phosphors. "Combined with confocal or multiphoton microscopy this would enable 3-D oxygen imaging in living animals -- something many researchers would find very useful," Zipfel said.

His group has already purchased a microscope and an optical bench with the new funding, and the grant will fund two of his graduate students for three years.

To date, Cornell has received 124 ARRA grants, totaling more than $99.9 million.

Graduate student Melissa Rice is a writer intern at the Cornell Chronicle.

####

About Cornell University
Once called "the first American university" by educational historian Frederick Rudolph, Cornell University represents a distinctive mix of eminent scholarship and democratic ideals. Adding practical subjects to the classics and admitting qualified students regardless of nationality, race, social circumstance, gender, or religion was quite a departure when Cornell was founded in 1865.

Today's Cornell reflects this heritage of egalitarian excellence. It is home to the nation's first colleges devoted to hotel administration, industrial and labor relations, and veterinary medicine. Both a private university and the land-grant institution of New York State, Cornell University is the most educationally diverse member of the Ivy League.

For more information, please click here

Contacts:
Media Contact:
Blaine Friedlander
(607) 254-8093

Cornell Chronicle:
Susan Lang
(607) 255-3613

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Tools

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

Nanobiotechnology

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project