Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researcher works toward making biological imaging 1,000 times faster with stimulus grant

Warren Zipfel
Warren Zipfel

Abstract:
Fluorescence lifetime imaging is a useful but relatively complex technique for probing the local microenvironment of a fluorescent molecule. The method can be used to help determine biochemical makeup of body tissues or measure distances between molecules on the nanometer scale.

With a new grant of more than $675,000 from the National Science Foundation funded by the American Reinvestment and Recovery Act (ARRA), Warren Zipfel '87, Ph.D. '93, associate professor of biomedical engineering, is working to make fluorescence lifetime imaging more efficient and simpler to implement.

Researcher works toward making biological imaging 1,000 times faster with stimulus grant

Ithaca, NY | Posted on November 17th, 2009

"I hope this will become a common mode of fluorescence imaging," Zipfel said.

The technique works by using fluorescent dyes to tag biological molecules of interest. These fluorophores absorb light from a pulsed laser, which puts them into a higher energy state, after which they emit light of a different wavelength. By measuring the "fluorescence lifetime" -- the time between the absorption of the light and the emission of the fluorescence -- scientists can gain information about the local environment the molecule resides in.

Fluorescence lifetime is commonly measured by time-correlated single photon counting (TCSPC), a method that, Zipfel says, "although is highly accurate, can be too slow for practical fluorescence imaging use."

With the new method and instrument his group is developing, Zipfel predicts that he will be able to collect images as much as 1,000 times faster than with TCSPC.

Zipfel also hopes that this new method will be useful to image the oxygen concentrations in and around tumors by using the method to image the phosphoresce lifetimes of oxygen sensitive phosphors. "Combined with confocal or multiphoton microscopy this would enable 3-D oxygen imaging in living animals -- something many researchers would find very useful," Zipfel said.

His group has already purchased a microscope and an optical bench with the new funding, and the grant will fund two of his graduate students for three years.

To date, Cornell has received 124 ARRA grants, totaling more than $99.9 million.

Graduate student Melissa Rice is a writer intern at the Cornell Chronicle.

####

About Cornell University
Once called "the first American university" by educational historian Frederick Rudolph, Cornell University represents a distinctive mix of eminent scholarship and democratic ideals. Adding practical subjects to the classics and admitting qualified students regardless of nationality, race, social circumstance, gender, or religion was quite a departure when Cornell was founded in 1865.

Today's Cornell reflects this heritage of egalitarian excellence. It is home to the nation's first colleges devoted to hotel administration, industrial and labor relations, and veterinary medicine. Both a private university and the land-grant institution of New York State, Cornell University is the most educationally diverse member of the Ivy League.

For more information, please click here

Contacts:
Media Contact:
Blaine Friedlander
(607) 254-8093

Cornell Chronicle:
Susan Lang
(607) 255-3613

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Tools

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project