Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanotech in space: Rensselaer experiment to weather the trials of orbit

Space Shuttle Atlantis will next week carry a new Rensselaer nanomaterials experiment to the International Space Station. Samples of novel nanocomposite materials, seen in the photo, will be mounted to the hull of the space station, and tested to see how they weather the perils of space.

Credit: Rensselaer/University of Florida
Space Shuttle Atlantis will next week carry a new Rensselaer nanomaterials experiment to the International Space Station. Samples of novel nanocomposite materials, seen in the photo, will be mounted to the hull of the space station, and tested to see how they weather the perils of space. Credit: Rensselaer/University of Florida

Abstract:
Novel nanomaterials developed at Rensselaer Polytechnic Institute are scheduled to blast off into orbit on November 16 aboard Space Shuttle Atlantis.

Nanotech in space: Rensselaer experiment to weather the trials of orbit

Troy, NY | Posted on November 14th, 2009

The project, funded by the U.S. Air Force Multi University Research Initiative (MURI), seeks to test the performance of the new nanocomposites in orbit. Space Shuttle Atlantis will carry the samples to the International Space Station (ISS). The materials will then be mounted to the station's outer hull in a Passive Experiment Carrier (PEC), and exposed to the rigors of space.

Rensselaer professors Linda Schadler, of the Department of Materials Science and Engineering, and Thierry Blanchet, of the Department of Mechanical, Aerospace, and Nuclear Engineering, worked with a team of researchers from the University of Florida to develop two different types of experimental nanomaterials. The MURI project and the University of Florida research team are led by Rensselaer alumnus W. Greg. Sawyer '99, who earned his bachelor's, master's, and doctoral degrees from Rensselaer and is now the N. C. Ebaugh Professor of Mechanical and Aerospace Engineering at the University of Florida. Blanchet was Sawyer's doctoral adviser.

The first new material is a wear-resistant, low-friction nanocomposite, created by mixing nanoscale alumina particles with polytetrafluoroethylene (PTFE), which is known commercially as Teflon. Schadler and her research group introduced different fluorine-coated nanoparticles into conventional PTFE. The small amount of additive caused the wear rate of the PTFE to drop by four orders of magnitude, without affecting the PTFE's coefficient of friction. The end result is a stronger, more durable PTFE that is almost as nonstick and slippery as untreated PTFE.

The gained benefit, Schadler said, is the difference between PTFE that can survive sliding along a surface for a few kilometers before wearing away, and a nanocomposite that could slide across a surface for more than 100,000 kilometers before wearing away. PTFE is often used to coat the surface of moving parts in different devices. The less friction on the surface of these moving parts, the less energy is required to move the parts, Schadler said.

"We're very excited to have this experiment installed in the ISS, and to see how the new material performs in space," Schadler said. "In a laboratory setting, the wear rate of the material is four orders of magnitude lower than pure PTFE, which means it is considerably more resistant to wear and tear. Just as important, these advances don't increase the material's coefficient of friction, which means the increase in durability won't come at the expense of creating extra friction."

Affixed to the station, which travels at about 27,700 kph, the nanocomposite sample will be exposed to ultraviolet radiation, and temperatures ranging from -40 degrees to 60 degrees Celsius. The nanocomposite will be mounted on a tribometer, developed by Sawyer, which will measure the friction of the material's surface. A control sample of the material, protected in a vacuum chamber in the PEC, will also be tested. The apparatus will send data in real-time to the ISS laboratory, which in turn will be forwarded to the research team.

The second set of nanomaterials to be launched into space are conductive polymer nanocomposites. During the loading of the tribometers into the PEC for space travel, an opportunity arose to also test the conductivity of carbon nanotube-filled polyamideimide and liquid crystalline polymers as a function of space exposure. The conductive composites, developed by Schadler and former Rensselaer postdoctoral researcher Justin Bult - who is now a researcher at the U.S. Department of Energy National Renewable Energy Laboratory - had to be developed in less than a week.

"It was an exciting week and we weren't sure if the composites would hold up to the rigorous testing imposed on them to determine if they could even be launched into space," Schadler said. "It was a thrill when some of them did, and to see the pictures of them mounted in the PEC."

Blanchet said he's very pleased, but not surprised, at the success of his former student, Sawyer, in leading this space-bound research study.

"Greg is at the top of his game, and it's wonderful to see the research areas he was introduced to as a student here at Rensselaer evolve into such an important, high-profile experiment in the International Space Station," Blanchet said. "The fact that he's collaborating with Rensselaer researchers makes it even better."

Schadler and Blanchet's nanocomposites experiments are the second Rensselaer project to launch into space this year. In August, an experimental heat transfer system designed by Rensselaer professors Joel Plawsky and Peter Wayner was carried to the ISS aboard Space Shuttle Discovery. The project, called the Constrained Vapor Bubble (CVB), will remain installed in the ISS for up to three years. The experiment could yield important fundamental insights into the nature of heat and mass transfer operations that involve a phase change, such as evaporation, condensation, and boiling, as well as engineering data that could lead to the development of new cooling systems for spacecraft and electronics devices.

####

About Rensselaer Polytechnic Institute
Rensselaer Polytechnic Institute is the nation’s oldest technological university. The university offers degrees from five schools: Engineering; Science; Architecture; Humanities, Arts, and Social Sciences; and the Lally School of Management & Technology; as well as an interdisciplinary degree in Information Technology.

Institute programs serve undergraduates, graduate students, and working professionals around the world. The Institute’s long-standing reputation drew students from 39 states in addition to Washington, D.C., Puerto Rico, and 13 foreign countries in the fall of 2009.

Rensselaer offers more than 145 programs at the bachelor’s, master’s, and doctoral levels. Students are encouraged to work in interdisciplinary programs that allow them to combine scholarly work from several departments or schools. The university provides rigorous, engaging, interactive learning environments and campus-wide opportunities for leadership, collaboration, and creativity.

For more information, please click here

Contacts:
Michael Mullaney

518-276-6161

Copyright © Rensselaer Polytechnic Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Govt.-Legislation/Regulation/Funding/Policy

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Possible Futures

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Materials/Metamaterials/Magnetoresistance

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Military

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Aerospace/Space

Onion-like nanoparticles found in aircraft exhaust May 14th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Flexible electronics integrated with paper-thin structure for use in space January 17th, 2025

The National Space Society Congratulates SpaceX on Starship’s 7th Test Flight: Latest Test of the Megarocket Hoped to Demonstrate a Number of New Technologies and Systems January 17th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project