Home > News > 'Universal' equation describes how materials behave at nanoscale
November 5th, 2009
'Universal' equation describes how materials behave at nanoscale
Abstract:
Understanding how materials behave at tiny length scales is crucial for developing future nanotechnologies and continues to be a great challenge for both theoretical and experimental physicists alike. Now, a physicist at the Institute of Electronics, Microelectronics and Nanotechnology (IEMN) in Villeneuve d'Ascq, France, has borrowed from 19th century physics to come up with a new "universal" equation that predicts how size affects the key physical properties of nanometre-sized structures, which behave very differently from their macroscopic counterparts.
The surface-to-volume ratio of a structure increases dramatically as it is made smaller and therefore surface effects can be very important for tiny devices. "My equation links size effects not only to this surface-to-volume ratio but also to the intrinsic nature of the nanoparticles involved - that is, whether they are fermions or bosons," Grégory Guisbiers told physicsworld.com.
Source:
physicsworld.com
| Related News Press |
News and information
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Physics
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025
Possible Futures
Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
Announcements
Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||