MENU

Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Chemical engineering professor awarded two grants to investigate directed self-assembly

Eric Furst
Eric Furst

Abstract:
Eric Furst, associate professor in the Department of Chemical Engineering at the University of Delaware, has received two grants totaling $727,000 for his work on directed self-assembly of soft materials.

Chemical engineering professor awarded two grants to investigate directed self-assembly

Newark, DE | Posted on October 20th, 2009

The National Science Foundation (NSF) has awarded Furst $292,000 to investigate interactions and self-assembly of anisotropic colloidal particles in electric fields, while the Department of Energy (DOE) has granted him $435,000 to study directed self-assembly of nanodispersions.

Soft materials, which are neither crystalline solids nor simple liquids but lie somewhere in between, include soaps, paints, gels, plastics, glues, and biological tissues.

"Biological systems have provided us with the inspiration to engineer modern soft materials using self-assembly," Furst explains. "We're using the same principles to manipulate and control the interactions of colloidal particles and other building blocks so that they spontaneously organize themselves into structures that perform a desired function."

According to Furst, directed self-assembly is especially important for the development of nanotechnology, and his two recent grants are an outgrowth of previous funding to a group of faculty in the UD Department of Chemical Engineering through NSF's Nanotechnology and Interdisciplinary Research Team (NIRT) program.

"Engineering micro- to nanoscale devices and nanostructured materials requires control and understanding of the thermodynamics and kinetics of self-assembly of nanoscale building blocks in solution," he says.

One approach to providing that control is to use electric fields to guide the process in a particular way. The new NSF grant will support work addressing that issue, with a particular focus on unusual particles known as doublets, which resemble two spheres pushed together.

"We're interested in seeing how these particles polarize in an electric field and how their shape affects their ability to form a structure," Furst says. "The work promises to give us new insights into directed self-assembly."

The DOE project will be directed toward how the technology can be used to harvest soft materials for energy applications.

Article by Diane Kukich
Photo by Doug Baker

####

About University of Delaware
The University of Delaware has a great tradition of excellence, from our founding as a small private academy in 1743, to the research-intensive, technologically advanced institution of today.

Our alumni tell our story of achievement, from our first class, which included three signers of the Declaration of Independence and one signer of the U.S. Constitution, to the more than 140,000 living Blue Hens who are making vital contributions to the world--in science, business, education, the arts, policy, health care, the environment, and many other areas. Vice President Joseph R. Biden Jr. and his wife, Jill, are both UD alumni.

The University received its charter from the State of Delaware in 1833 and was designated one of the nation’s historic Land Grant colleges in 1867. Today, UD is a Land Grant, Sea Grant and Space Grant institution. UD also is classified by the Carnegie Foundation for the Advancement of Teaching as a research university with very high research activity--a designation accorded to less than 3 percent of U.S. colleges and universities.

For more information, please click here

Contacts:
Phone: (302) 831-2792
ud-ocm@udel.edu
www.udel.edu/ocm

Copyright © University of Delaware

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Self Assembly

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Liquid crystal templated chiral nanomaterials October 14th, 2022

Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022

Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022

Announcements

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project