Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researcher Honored for Experimental Work in Nanotechnology

Dr. Óscar Custance
Dr. Óscar Custance

Abstract:
Air Force-funded researcher, Dr. Óscar Custance from the National Institute for Materials Science in Japan has been chosen for the 2009 Feynman Prize for Experimental Work in Nanotechnology for his research in atomic-scale precision.

Researcher Honored for Experimental Work in Nanotechnology

Arlington, VA | Posted on October 19th, 2009

The results of this research could someday lead to more effective catalysts for the production of hydrogen fuel.

This year's prize for experimental work will be awarded in January 2010 near Palo Alto, California along with a prize for theory. Both have been awarded annually since 1993 by the Foresight Institute in honor of Nobel Laureate Richard Feynman.

The Feynman Prizes in Nanotechnology recognize researchers whose recent work has most advanced the field toward the achievement of Feynman's vision for nanotechnology: molecular manufacturing -- the construction of atomically-precise products through the use of molecular machine systems.

For the past two years, the Asian Office of Aerospace Research and Development (AOARD), an international detachment of the Air Force Office of Scientific Research, has been supporting Custance's research to develop catalysts that use an atomic-scale-precision technique to place active gold atoms at an exact location on or near the surface of a model system. For the purpose of this research, Custance is studying the system of gold on cerium dioxide, or ceria.

"Gold has become an exciting element to study for its catalytic properties," explains Dr. Thomas Erstfeld, AOARD program manager. "It was once thought of as relatively inert, but in the past couple of years, it has been discovered that nano-sized gold particles are excellent catalysts."

Custance will share the award with Professors Yoshiaki Sugimoto and Masayuki Abe of Osaka University in recognition of their pioneering experimental demonstrations of mechanosynthesis for vertical and lateral manipulation of single atoms on semiconductor surfaces.

Their work, published in Nature, Science and other prestigious scientific journals, has demonstrated a level of control over the ability to identify and position atoms on surfaces at room temperature, which opens up new possibilities for the manufacture of atomically precise structures.

####

About Air Force Office of Scientific Research
The Air Force Office of Scientific Research (AFOSR), located in Arlington, Virginia, continues to expand the horizon of scientific knowledge through its leadership and management of the Air Force's basic research program. As a vital component of the Air Force Research Laboratory (AFRL), AFOSR's mission is to discover, shape and champion basic science that profoundly impacts the future Air Force.

About AOARD: The Asian Office of Aerospace Research and Development (AOARD), located in Tokyo, Japan, oversees the U.S. Air Force's Research and Development interests in Asia and Pacific Rim Region countries by establishing collaboration between Air Force scientists and engineers with their counterparts in those countries.

About Foresight Institute: The Foresight Institute is a leading think tank and public interest organization focused on nanotechnology. Foresight dedicates itself to providing education, policy development and networking to ensure the beneficial implementation of molecular manufacturing.

For more information, please click here

Copyright © Air Force Office of Scientific Research

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chemistry

Quantum interference in molecule-surface collisions February 28th, 2025

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Govt.-Legislation/Regulation/Funding/Policy

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Military

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project