Home > Press > Tiny Test Tube Experiment Shows Reaction Of Melting Materials at the Nano Scale
![]() |
A still shot from the video of the nano test tube experiment conducted in the lab of Brian Korgel, professor in the Department of Chemical Engineering at The University of Texas at Austin. The video shows gold moving up the length of a germanium nanowire, which was encased in a carbon nano test tube, at high temperature. The image has been magnified 100,000 times and the video’s speed has been greatly increased. |
Abstract:
Researchers at The University of Texas at Austin have conducted a basic chemistry experiment in what is perhaps the world's smallest test tube, measuring a thousandth the diameter of a human hair.
The nano-scale test tube is so small that a high-power electron microscope was required to see the experiment.
Made from a thin shell of carbon, the test tube was stuffed with a thread-like crystal (a nanowire) of germanium with a tiny particle of gold at its tip.
The researchers heated the test tube and watched as the gold melted at the end of the nanowire, much like any solid crystal heated above its melting temperature in a glass test tube.
"The experiment is relatively simple," said chemical engineer Brian Korgel, whose laboratory conducted it. "Essentially, we observe well-known phenomena, like melting, capillarity and diffusion, but all at a much, much smaller scale than has been possible to see before."
Watch a video of the nano test tube experiment conducted in Korgel's lab, here: www.utexas.edu/opa/blogs/research/2009/10/15/more-on-the-nano-test-tube-experiment/
Such experiments provide new fundamental insights about how nanomaterials behave, and might be used to create new technologies, from better solar cells to unprecedentedly strong yet light-weight materials to higher performance optical displays and computing technologies.
Korgel and graduate students Vincent Holmberg and Matthew Panthani conducted the experiment, which was reported in the Oct. 16 edition of Science.
During the experiment, the nanowire melted as the temperature rose, but its shape was retained because the carbon test tube maintained its shape.
"In these very small structures, the phase behavior (like its melting temperature, etc.) can be different than bulk materials and can be size-dependent," Korgel said. "Therefore, if the structure changes when the phase change happens, then the result becomes very difficult to interpret and in fact, may not even represent the true behavior of the system."
The carbon test tube, however, provided a rigid container for studying what happens when materials are heated and melted at the nanoscale.
Funding for the research came from the Robert A. Welch Foundation and the National Science Foundation. Holmberg received support from the Fannie and John Hertz Foundation and the National Science Foundation for a Graduate Research Fellowship.
Learn more about Korgel's work, here www.che.utexas.edu/korgel-group/
####
About University of Texas at Austin
The University of Texas at Austin is dedicated to improving the quality of life of the people of Texas and the United States. We are a leading provider of education and research with a depth and diversity of resources unmatched by most other public universities. As an enduring symbol of the spirit of Texas—big, ambitious and bold—the university drives economic and social progress in Texas and serves our nation as a leading center of knowledge and creativity.
For more information, please click here
Contacts:
Tim Green, Office of the Vice President for Research, 512-475-6596; Brian Korgel, Cockrell School of Engineering, 512-471-5633.
Copyright © University of Texas at Austin
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Chemistry
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Single-atom catalysts change spin state when boosted by a magnetic field June 4th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Govt.-Legislation/Regulation/Funding/Policy
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Possible Futures
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |