Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Scientists developing more efficient solar energy solutions

James McCusker, MSU professor of chemistry
James McCusker, MSU professor of chemistry

Abstract:
A collaboration of chemists, mathematicians and engineers at Michigan State University is driving to improve solar panel technology, backed by a $1.9 million grant from the National Science Foundation.

The three-year grant comes from American Recovery and Reinvestment Act monies and will focus on developing methods for making a new class of solar cells from cheaper materials.

Scientists developing more efficient solar energy solutions

East Lansing, MI | Posted on October 14th, 2009

"For renewable energy to succeed, it has to get to a point where it is economically competitive with current technology," said chemistry Professor James McCusker, the project leader. "This means we need totally transformational technologies."

Today's solar panels are based on science worked out when the Beatles' "Good Day Sunshine" was new to the airwaves, McCusker said. Their primary light absorber is extremely pure - and costly -- silicon. Electricity produced by solar panels today costs two or three times as much as energy produced by coal.

"With estimates showing global power consumption tripling by 2050, we need to have scalable approaches that balance cost efficiency with environmental stewardship," McCusker said. "Only solar can be scalable to the amounts required."

Solar energy is plentiful, if underutilized: The amount that hits the Earth's surface in one hour equals the energy humans consume in a year.

The group is developing a solar cell based on a design that combines a dye with an inexpensive semiconductor -- titanium dioxide - instead of silicon. Titanium dioxide is an opaque white pigment commonly used in paint and other consumer products. Applying advanced materials and nanoparticle technology can make electron conduction more efficient, researchers said.

The efficiency of these devices is around 11 percent, McCusker said, but that requires using a liquid electrolyte. His project will use a more efficient and inexpensive solid-state material.

The complexity of developing new approaches for converting sunlight into energy requires interaction among a variety of specialists. Research team members include chemical engineer Lawrence Drzal; chemists McCusker and Greg Baker; and mathematicians Keith Promislow and Andrew Christlieb. The mathematicians will develop modeling to efficiently guide the chemists, who experiment with materials alongside chemical engineers.

McCusker leads a research group at MSU that is deeply involved in many areas of solar energy research. Some of his other research, supported by the U.S. Department of Energy, focuses on using other abundant elements such as iron and copper.

"To properly address the future demands of energy, we need to first solve the science in order to develop the technology for tomorrow," McCusker said. "It takes a long time and much collaboration, but our job as scientists is to conquer the fundamental hurdles and address the scientific problems, so companies can then build and develop the technologies needed based on the science."

####

About Michigan State University
Michigan State University has been advancing knowledge and transforming lives through innovative teaching, research and outreach for more than 150 years. MSU is known internationally as a major public university with global reach and extraordinary impact. Its 17 degree-granting colleges attract scholars worldwide who are interested in combining education with practical problem solving.

For more information, please click here

Contacts:
Michael Steger
College of Natural Science
Office:
(517) 432-4561


James McCusker
Chemistry


Office:
(517) 355-9715 ext. 106

Copyright © Michigan State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Govt.-Legislation/Regulation/Funding/Policy

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project