Home > Press > High-sensitivity bone marrow aspiration technology enhances leukemia cell detection
This is Richard S. Larson, M.D., Ph.D., vice president for translation research at the University of New Mexico Health Science Center.
Credit: Richard S. Larson, M.D., Ph.D. |
Abstract:
Scientists have created a viable technology to improve the detection of leukemia cells in bone marrow.
Superconducting Quantum Interference Device (SQUID) enhanced the ability to rapidly quantify the amount of nanoparticle bound tumor cells in a sample at least 10 fold, and increased sensitivity of minimal residual disease measurements. Results of this proof-of-concept study are published in Cancer Research, a journal of the American Association for Cancer Research.
"This promises to significantly enhance the detection for residual disease in leukemia and other cancers," said lead scientist Richard S. Larson, M.D., Ph.D., vice president for translation research at the University of New Mexico Health Science Center. "Coupling nanotechnology can be employed in common techniques to enhance its utility."
These findings are a result of a collaborative research effort between Senior Scientific, LLC, and the University of New Mexico. The study was funded by a small business innovation grant awarded by the National Cancer Institute.
Previous studies have indicated that the magnetic needle can collect approximately 80 percent of leukemia cells in a bone marrow sample in a matter of minutes, according to Edward R. Flynn, Ph.D., president and CEO of Senior Scientific, LLC.
The scientists developed this magnetic marrow biopsy needle in an effort to target tumor cells with nanoparticles and then preferentially extract the tumor cells with a magnetic needle. They used anti-CD34 antibody loaded magnetic nanoparticles to detect CD34+ cells as an indicator of leukemia. To quantify the cells recovered, they coupled this nanoparticle-mediated fishing for leukemic cells with SQUID.
SQUID enhanced the sensitivity of measuring minimal residual disease over standard pathology methods for patients undergoing chemotherapy.
"This result will determine more precisely the effect of the chemotherapy and will help to ascertain proper dosage or termination of treatment for patients," said Flynn.
Furthermore, Larson said that SQUID will work well with current technologies to improve the detection of leukemia cells in the bone marrow. Chi Van Dang, M.D., Ph.D., professor of medicine, cell biology, oncology and pathology, and vice dean for research at the Johns Hopkins University School of Medicine, believes this approach is quite different from the current standard. He suggested that the sensitivity compared to polymerase chain reaction still needs to be determined.
"In the case of leukemias without clear genetic markers, the magnetic needle could be useful," said Dang, who was not associated with this study, but is an editorial board member for Cancer Research. "It is possible that this technology could be used to detect cancer stem cells in general, if the proper antibodies with appropriate specificity are available."
Senior Scientific, LLC is currently participating in follow-up studies to increase the efficiency of the magnetic needle further through advanced magnet configurations and theoretical calculations.
Subscribe to the AACR RSS News Feed: feeds.feedburner.com/aacr
Subscribe to the Cancer Research RSS Feed: cancerres.aacrjournals.org/rss/recent.xml
####
About American Association for Cancer Research
The mission of the American Association for Cancer Research is to prevent and cure cancer. Founded in 1907, AACR is the world's oldest and largest professional organization dedicated to advancing cancer research. The membership includes 30,000 basic, translational and clinical researchers; health care professionals; and cancer survivors and advocates in the United States and nearly 90 other countries. The AACR marshals the full spectrum of expertise from the cancer community to accelerate progress in the prevention, diagnosis and treatment of cancer through high-quality scientific and educational programs. It funds innovative, meritorious research grants, research fellowship and career development awards. The AACR Annual Meeting attracts more than 16,000 participants who share the latest discoveries and developments in the field. Special conferences throughout the year present novel data across a wide variety of topics in cancer research, treatment and patient care. The AACR publishes six major peer-reviewed journals: Cancer Research; Clinical Cancer Research; Molecular Cancer Therapeutics; Molecular Cancer Research; Cancer Epidemiology, Biomarkers & Prevention; and Cancer Prevention Research. The AACR also publishes CR, a magazine for cancer survivors and their families, patient advocates, physicians and scientists. CR provides a forum for sharing essential, evidence-based information and perspectives on progress in cancer research, survivorship and advocacy.
For more information, please click here
Contacts:
Tara Yates
267-646-0558
Copyright © American Association for Cancer Research
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Quantum nanoscience
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024
Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||