Home > Press > Golden Nanotubes Detect Tumor Cells, Map Sentinel Lymph Nodes
http://dx.doi.org/doi:10.1038/nnano.2009.231|View abstract - “Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents.” |
Abstract:
Biomedical researchers at the University of Arkansas in Fayetteville and the University of Arkansas for Medical Sciences (UAMS) in Little Rock have developed a special contrast-imaging agent made of gold-coated carbon nanotubes that is capable of molecular mapping of lymphatic endothelial cells and detecting cancer metastasis in sentinel lymph nodes. The findings from this study, which was led by Jin-Woo Kim, Ph.D., M.S., University of Arkansas, and Vladimir P. Zharov, Ph.D., D.Sc., M.S., UAMS, were published in the journal Nature Nanotechnology.
Photoacoustic and photothermal methods developed by Dr. Zharov deliver energy, via laser pulses, into biological tissue through interaction of the laser light with carbon nanotubes. When some of the energy is absorbed by the carbon nanotubes and converted into heat, the nanotubes expand and emit sound waves. However, carbon nanotubes have not been previously developed as an imaging agent because of concerns about toxicity.
Dr. Kim's research team addressed the toxicity problem by depositing a thin layer of gold around the carbon nanotubes, enhancing absorption of laser radiation and reducing toxicity. In vitro tests showed only minimal toxicity associated with the gold nanotubes. Compared with existing nanoparticles, the gold nanotubes also exhibited high laser absorption at a miniscule diameter. The gold nanotubes required extremely low laser energy levels for detection, and low concentrations were required for effective diagnostic and therapeutic applications.
In the current study, the investigators coupled their gold nanotubes with an antibody specific to a critical lymphatic-endothelial receptor. This enabled the researchers to map the endothelial cells that line the internal surface of lymphatic vessels. This is important because lymphatic endothelial cells come into direct contact with other cells, such as immune-related cells, tumor cells, and bacteria entering the lymphatic system. The specific receptor, known as LYVE-1, is one of the most widely used markers of lymphatic endothelium.
In one set of experiments, the research team successfully demonstrated the unique ability of the gold nanotubes for integrated diagnosis and therapy at the single-cell level. First, they used photoacoustic spectroscopy to detect gold nanotubes that were binding to tumor cells within sentinel lymph nodes, the first lymph node or group of nodes reached by metastasizing cancer cells from a primary tumor, in mice bearing human tumors. They then switched to photothermal mode, which involved boosting the laser intensity by approximately sixfold, and demonstrated that they were able to destroy those very tumor cells.
####
About National Cancer Institute
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.
The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.
Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.
For more information, please click here
Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580
Copyright © National Cancer Institute
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Imaging
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||