Home > Press > Magnetic Nanoworms and Nanocrystals Deliver siRNA to Tumors
Abstract:
Small pieces of nucleic acid known as short interfering RNAs, or siRNAs, can turn off the production of specific proteins, a property that makes them one of the more promising new classes of anticancer drugs in development. Indeed, at least two siRNA-based anticancer therapies, both delivered to tumors in nanoparticles, have begun human clinical trials.
Now, investigators at the Massachusetts Institute of Technology (MIT) have developed a modular nanoparticle-based drug delivery system that maximizes the quantity of siRNA molecules that not only can enter cells but also can escape into the cytoplasm, where they can interfere with protein production. Sangeeta Bhatia, M.D., Ph.D., and Phillip A. Sharp, Ph.D., of the MIT-Harvard Center of Cancer Nanotechnology Excellence, and Alain Charest, Ph.D., M.Sc., Tufts University School of Medicine, led the study, whose results appear in the journal ACS Nano.
The new siRNA delivery vehicle is made of dendrimer-conjugated magnetic and fluorescent nanoworms that the investigators call "dendriworms." Dendrimers are synthetic polymers that generally have a spherical shape and that can be readily modified to carry a wide range of molecules, including nucleic acids. In this work, Dr. Bhatia and her colleagues used polyamidoamine dendrimers, which a large body of preclinical work has shown are fully biocompatible, and coupled them to a chain of magnetic nanoparticles known as a nanoworm. The investigators also added a fluorescent molecule to the nanoworms, thereby creating a drug delivery vehicle that they could also image in the body using either magnetic resonance imaging or fluorescence imaging. In a final step, the researchers added siRNA to the dendriworms. The resulting construct, which contains approximately 7 magnetic nanoparticles, 45-50 dendrimers, and 50 siRNA molecules, was stable under test conditions for up to 6 hours.
When added to cells growing in culture, this siRNA-dendrimer complex rapidly entered the cells and then escaped into the cellular cytoplasm. The researchers observed no significant toxicity in these in vitro experiments. When the dendriworms were administered to human glioblastoma cells, the delivered siRNA was able to silence production of the targeted gene, in this case a mutant gene known to be involved in glioblastoma development.
To test whether this dendriworm would work in a living animal, the researchers used a strain of mice that were genetically engineered to develop glioblastoma tumors spontaneously in the brain. The investigators found that the dendriworms were able to penetrate the tumors, deliver their therapeutic siRNA cargo into tumor cells, and silence the targeted gene in those cells.
Meanwhile, a group of investigators at The Jikei University School of Medicine in Tokyo, Japan, led by Yoshihisa Namiki, M.D., has demonstrated that lipid-coated magnetic crystals can safely and effectively deliver therapeutic siRNA to tumors in mice. The results of their experiments were published in the journal Nature Nanotechnology.
Dr. Namiki and his colleagues created their delivery vehicle by coating iron oxide nanocrystals with a layer of positively charged lipids. This layer binds strongly to siRNA molecules, which— like all nucleic acids—have a strong negative charge. After optimizing the lipid coating to maximize siRNA delivery efficiency, the investigators used their nanoparticle to deliver an anti-EGFR siRNA to gastric tumors in mice. After injecting the mice with the therapeutic nanoparticles, the investigators applied a local magnetic field around the vicinity of the tumor. After 28 days, tumors in the treated mice were 50% smaller compared with tumors in mice treated with just the nanoparticle and no siRNA.
####
About National Cancer Institute
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.
The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.
Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.
For more information, please click here
Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580
Copyright © National Cancer Institute
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
View abstract - “Functional delivery of siRNA in mice using dendriworms.”
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Nanobiotechnology
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||