Home > Press > New nanostructure technology provides advances in eyeglass, solar energy performance
Chemical engineers at Oregon State University are using extraordinarily small films at the nanostructure level to improve the performance of eyeglasses and, ultimately, solar energy devices. These films, which resemble millions of tiny pyramids, reduce the reflectance of any light that strikes the material. (Image by Seung-Yeol Han) |
Abstract:
Chemical engineers at Oregon State University have invented a new technology to deposit "nanostructure films" on various surfaces, which may first find use as coatings for eyeglasses that cost less and work better.
Ultimately, the technique may provide a way to make solar cells more efficiently produce energy.
The films reduce the reflectance of light, and in the case of eyeglasses would capture more light, reduce glare and also reduce exposure to ultraviolet light. Some coatings with these features are already available, but the new technology should perform better at a lower cost, and be able to be applied on-site in a dispenser's office.
"There's really a whole range of things this technology may ultimately be useful for," said Chih-hung Chang, an associate professor in the OSU Department of Chemical, Biological and Environmental Engineering. "They should be able to make almost any type of solar energy system work more efficiently, and ultimately could be used in cameras or other types of lenses."
A patent has been applied for on the new technology, and the first commercial products may be ready within a year, Chang said.
The key to the process is use of a chemical bath, controlled by a microreactor, to place thin-film deposits on various substrates such as glass, plastic, silicon or aluminum. In this case, the technology will create a type of nanostructure that resembles millions of tiny pyramids in a small space, which function to reduce the reflectance of any light that strikes the material.
The scientists are now working on the application of this thin film to polycarbonate, the type of plastic most commonly used in eyeglass production, and also plan to create a small unit that can apply the films inexpensively in an office setting.
The final product should be faster to apply, less costly, reduce waste of materials and perform better than existing technologies, the researchers said.
####
About Oregon State University
The OSU College of Engineering is among the nation’s largest and most productive engineering programs. In the past six years, the College has more than doubled its research expenditures to $27.5 million by emphasizing highly collaborative research that solves global problems, spins out new companies, and produces opportunity for students through hands-on learning.
For more information, please click here
Contacts:
Media Contact
David Stauth
541-737-0787
Source
Chih-hung Chang
541-737-8548
Copyright © Oregon State University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Thin films
Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024
Understanding the mechanism of non-uniform formation of diamond film on tools: Paving the way to a dry process with less environmental impact March 24th, 2023
New study introduces the best graphite films: The work by Distinguished Professor Feng Ding at UNIST has been published in the October 2022 issue of Nature Nanotechnology November 4th, 2022
Thin-film, high-frequency antenna array offers new flexibility for wireless communications November 5th, 2021
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Patents/IP/Tech Transfer/Licensing
Getting drugs across the blood-brain barrier using nanoparticles March 3rd, 2023
Metasurfaces control polarized light at will: New research unlocks the hidden potential of metasurfaces August 13th, 2021
Arrowhead Pharmaceuticals Announces Closing of Agreement with Takeda November 27th, 2020
Personal Care/Cosmetics
DGIST and New Life Group launched a research project on "Functional beauty and health products using the latest nanotechnology" May 12th, 2023
A Comprehensive Guide: The Future of Nanotechnology September 13th, 2018
Graphene finds new application as anti-static hair dye: New formula works as well as commercial permanent dyes without chemically altering hairs March 22nd, 2018
Programmable materials find strength in molecular repetition May 23rd, 2016
Solar/Photovoltaic
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||