Home > Press > Nanotechnology treatment for burns reduces infection, inflammation
![]() |
Abstract:
Oil-and-water-based nanoemulsion could be more effective than commonly used lotions
Treating second-degree burns with a nanoemulsion lotion sharply curbs bacterial growth and reduces inflammation that otherwise can jeopardize recovery, University of Michigan scientists have shown in initial laboratory studies.
U-M burn surgeon Mark R. Hemmila, M.D., reports today at the Interscience Conference for Antimicrobial Agents and Chemotherapy on results achieved with a nanoemulsion developed at U-M and licensed by U-M to Ann Arbor-based NanoBio Corporation.
The nanoemulsion shows promise in overcoming the limitations of current creams used in burn treatment, which aren't able to penetrate skin to kill sub-surface bacteria and don't have a strong effect on inflammation, says Hemmila, associate professor of surgery at the U-M Medical School.
In a collaborative effort between the U-M Department of Surgery and NanoBio Corporation, Hemmila led experiments at the U-M Medical School in which a nanoemulsion lotion was able to reduce bacterial growth one-thousand-fold compared to control animals receiving no treatment or a placebo. The nanoemulsion showed a similar reduction when compared to a topical antimicrobial agent commonly used in people with burns.
The nanoemulsion is made of soybean oil, alcohol, water and detergents emulsified into droplets less than 400 nanometers in diameter. It has proved effective at killing a variety of bacteria, fungi and viruses in previous research.
The scientists used the nanoemulsion to treat partial thickness burns, better known as second degree burns, over 20 percent of the body, to test its effectiveness in the type of injuries doctors commonly see in people brought to tertiary hospital trauma and burn centers. Such burn victims typically require aggressive treatment in intensive care both to rein in infection and to try to prevent vital fluids from leaking from blood vessels into the damaged skin, a dangerous situation caused in part by excessive inflammation within the body.
The nanoemulsion appears to reduce the action of two inflammatory agents or cytokines that play a role in cell signaling during this critical post-burn period. Slowing this action may prevent initial burn damage from becoming worse, and thus reduce the severity of the burn and extent of skin grafting needed, says Hemmila.
The findings add one more possible use to a growing list of promising applications for the patented nanoemulsion technology developed by James R. Baker Jr., M.D., director of the Michigan Nanotechnology Institute for Medicine and Biological Sciences at U-M. Baker, a member of the research team, is the Ruth Dow Doan Professor of Nanotechnology and allergy division chief at the U-M Medical School. He is founder and CEO of NanoBio Corporation.
Uses for nanoemulsions include treatments for cold sores, now in phase 3 clinical trials, and for toenail fungus and cystic fibrosis infections, as well as vaccines against influenza and bioterrorism agents.
Before the burn treatment can be tested in people, further laboratory studies are needed to examine the nanoemulsion's effects on the overall healing process.
Patents/Disclosures: The patented nanoemulsion technology is licensed by U-M to NanoBio Corporation. Baker holds an equity interest in the company.
Others involved in the research: Stewart C. Wang, M.D., Ph.D., director of the U-M Burn Center and professor, U-M Department of Surgery; Aladdein Mattar, M.D., U-M Department of Surgery; Michael A. Taddonio, B.S., U-M Department of Surgery; Joyce A. Sutcliffe, Ph.D., NanoBio Corporation.
Funding: National Institutes of Health, American Association for the Surgery of Trauma, American College of Surgeons, and U-M Department of Surgery.
####
About University of Michigan
Excellence in medical education, patient care and research: That's what defines the University of Michigan Health System.
For more information, please click here
Contacts:
Media contact:
Anne Rueter
Phone: 734-764-2220
Copyright © University of Michigan
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Possible Futures
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Nanomedicine
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Patents/IP/Tech Transfer/Licensing
Getting drugs across the blood-brain barrier using nanoparticles March 3rd, 2023
Metasurfaces control polarized light at will: New research unlocks the hidden potential of metasurfaces August 13th, 2021
Arrowhead Pharmaceuticals Announces Closing of Agreement with Takeda November 27th, 2020
Personal Care/Cosmetics
DGIST and New Life Group launched a research project on "Functional beauty and health products using the latest nanotechnology" May 12th, 2023
A Comprehensive Guide: The Future of Nanotechnology September 13th, 2018
Graphene finds new application as anti-static hair dye: New formula works as well as commercial permanent dyes without chemically altering hairs March 22nd, 2018
Programmable materials find strength in molecular repetition May 23rd, 2016
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |