Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Virginia Tech's proposed next generation nano-computed tomography system will enhance nanoscale research

Ge Wang, far right, Virginia Tech director of the Virginia Tech-Wake Forest University School of Biomedical Engineering Sciences' biomedical imaging division, works in his nanoscale fabrication characterization research laboratory with Haiou Shen and Fang Liu of biomedical engineering.
Ge Wang, far right, Virginia Tech director of the Virginia Tech-Wake Forest University School of Biomedical Engineering Sciences' biomedical imaging division, works in his nanoscale fabrication characterization research laboratory with Haiou Shen and Fang Liu of biomedical engineering.

Abstract:
In 1991, Ge Wang, the Samuel Reynolds Pritchard Professor of Engineering at Virginia Tech, produced the first paper on spiral cone-beam computed tomography (CT), now an imaging technique used in the mainstream of the medical CT field.

Virginia Tech's proposed next generation nano-computed tomography system will enhance nanoscale research

Blacksburg, VA | Posted on September 8th, 2009


Today, Wang, known as a pioneer in this field, and his colleagues have successfully applied for more than $1.3 million from the National Science Foundation (NSF) to develop the next-generation nano-CT imaging system which promises to greatly reduce the required dose of radiation.

Virginia Tech and Xradia, a leading nano-CT company, are also collaborating on the project with a cost-sharing investment of close to $800,000.

CT is an imaging method that shows objects by sections or sectioning, through the use of x-ray waves and computer processing.

"X-ray nano-CT is a cutting edge imaging tool," Wang said, "but a long-standing barrier to realizing its full potential is its inability to precisely reconstruct an interior region of interest within a larger object from purely local projections."

Wang, has a scholarly record of achievements in the imaging world. More than 1000 scientific citations are attributed to his group's pioneering efforts. In 2002, for example, he and his research group pioneered another highly sensitive imaging procedure called bioluminescence tomography (BLT). One application of the in vivo molecular imaging technology became the identification of tumors in live animals.

As an additional example, in 2007 he and his collaborators, Yangbo Ye of the University of Iowa and Hengyong Yu, who is the associate director of Wang's CT lab, patented a novel X-ray imaging method called "interior tomography."

Interior tomography, Wang said, was a first step toward overcoming the long-standing barrier to realizing the full potential of X-ray nano-CT. Despite the ability of this cutting-edge imaging tool as a non-destructive, non-invasive recorder of information, it cannot "precisely reconstruct an interior region of interest within a large object from purely local projections," Wang said. And, when used in medicine, a patient is subjected to "a radiation dose that must be increased dramatically to obtain improved resolutions."

Wang suggested to the NSF that the combination of X-ray nano-CT and interior tomography will provide "a versatile nano-imaging tool that can visualize fine features within a larger object, and use a much lower radiation dose and in much less time." This new work is the foundation of the NSF project.

Working with Wang on this NSF grant are Chris Wyatt, associate professor of electrical and computer engineering; Linbing Wang, associate professor of civil and environmental engineering; and Yu, all at Virginia Tech. Also, David Carroll, associate professor of physics at Wake Forest University, is a member of the team. On the industrial side, the key collaborators are Steve Wang, S. H. Lau and Wenbing Yun.

Together, they believe they can construct this next generation of a nano-CT imaging system that will provide images that will reveal deeply imbedded details, including subcellular features. And, they believe they can handle a sample that is ten times larger than what is currently available, and at much reduced radiation dose," Wang explained.

Wang, director of the Virginia Tech-Wake Forest University School of Biomedical Engineering Sciences' (SBES) biomedical imaging division www.imaging.sbes.vt.edu, is also the founding editor-in-chief of the International Journal of Biomedical Imaging. He is the associate editor of the Institute of Electrical and Electronic Engineers (IEEE) Transactions on Medical Imaging and others.

SBES is part of the university's Institute for Critical Technology and Applied Science www.ictas.vt.edu/index.shtml. The institute has already developed a state-of-the-art nanoscale characterization and fabrication laboratory with capabilities on par with the best nanotechnology labs in the world. With his high-end 500 nanometer micro-CT system, newly funded by the National Institutes of Health (NIH), Wang is making efforts to build an advanced multi-scale CT facility in synergistic combination with the existing university resources as shown in the following chart.

"We are realizing our dream to establish the world's most advanced comprehensive multi-scale and multi-parameter CT facility," Wang said. The use of the facility will be available to other universities and industry.

An academic partnership already exists between Virginia Tech and Xradia www.xradia.com. Xradia is already in talks with Virginia Tech about commercializing the next generation nano-CT system.

####

For more information, please click here

Contacts:
Lynn Nystrom
(540) 231-4371

Copyright © Virginia Tech

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Govt.-Legislation/Regulation/Funding/Policy

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Tools

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Research partnerships

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project