Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanoparticles Detect and Profile Cancer Cells Rapidly

Abstract:
Using a new type of paramagnetic nanoparticle and a nuclear magnetic resonance (NMR) system built into a microfluidic device, a team of investigators at the Massachusetts General Hospital and Harvard Medical School has created an assay system capable of detecting as few as two cancer cells in 1 microliter of biological fluid. In addition, the new assay requires little sample processing and produces results in less than 15 minutes.

Nanoparticles Detect and Profile Cancer Cells Rapidly

Bethesda , MD | Posted on August 29th, 2009

Reporting its work in the Proceedings of the National Academy of Sciences of the United States of America, a research team led by Ralph Weissleder, M.D., Ph.D., co-principal investigator of the MIT-Harvard Center of Cancer Nanotechnology Excellence, describes the methods it developed to create a small but highly magnetic nanoparticle. The new nanoparticle is built around an iron-manganese core and is coated with a small, biocompatible organic molecule to render it soluble in water. This coating also provides attachment points to which the investigators added one of three different monoclonal antibodies, each of which recognizes a specific cancer biomarker.

The investigators also detailed their construction of a microfluidic NMR probe that dramatically improves on the signal-to-noise performance of an earlier probe they had developed. By improving the signal-to-noise properties of their detector, the investigators were able to reduce the sample volume needed for analysis to 1 microliter and increase mass-detection sensitivity by tenfold.

To test their device, the researchers used fine-needle aspirates from human tumors growing in mice as the biosample. Upon obtaining the biosample, the investigators added antibody-labeled magnetic nanoparticles, let them incubate for 5 minutes, washed the aspirates to remove excess nanoparticles, and then injected them into the microfluidic device. Using one antibody-labeled probe, the results were far from optimal, missing as many as 72% of the cancer cells in the sample. However, adding a second antibody-labeled nanoparticle reduced the false-negative rate to 28%, and adding the third antibody-labeled nanoparticle dropped the false-negative rate to almost zero.

####

About National Cancer Institute
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © National Cancer Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract - “Rapid detection and profiling of cancer cells in fine-needle aspirates”

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project