Home > Press > 'Nanospears' could lead to better solar cells, lasers, lighting
These red zinc oxide "nanospears" developed by Missouri S&T researchers grow on a surface of silicon. (Illustration provided by Dr. Jay A. Switzer.) |
Abstract:
Growing - and precisely aligning - microscopic, spear-shaped zinc oxide crystals on a surface of single-crystal silicon, researchers at Missouri University of Science and Technology may have developed a method to make more efficient solar cells.
Dr. Jay A. Switzer and his colleagues at Missouri S&T report in the journal Chemistry of Materials that their simple, inexpensive process could also lead to new materials for ultraviolet lasers, solid-state lighting and piezoelectric devices.
"It's kind of like growing rock candy crystals on a string," says Switzer, the Donald L. Castleman/Foundation for Chemical Research Professor of Discovery at Missouri S&T. But instead of using sugar water and string, Switzer's team grows the zinc oxide "nanospears" on the single-crystal silicon placed in a beaker filled with an alkaline solution saturated with zinc ions. The process yields tilted, single-crystal, spear-shaped rods that grow out of the silicon surface, like tiny spikes.
The spears are about 100-200 nanometers in diameter - hundreds of times smaller than the width of a human hair - and about 1 micrometer in length. A nanometer - visible only with the aid of a high-power electron microscope - is one billionth of a meter, and some nanomaterials are only a few atoms in size.
The research is reported today (Tuesday, Aug. 11) in Chemistry of Materials' online ASAP ("as soon as publishable") section and will appear in an upcoming issue.
Zinc oxide is a semiconductor that possesses some unusual physical properties, Switzer says. The material both absorbs and emits light, so it could be used in solar cells to absorb sunshine as well as in lasers or solid-state lighting as an emitter of light.
Silicon is also a semiconductor, but it absorbs light at a different part of the spectrum than zinc oxide. By growing zinc oxide on top of the silicon, "you're putting two semiconductors on top of each other," thereby widening the spectrum from which a solar cell could draw light, Switzer says.
"You can absorb more light and possibly get more power out" with a zinc oxide-silicon solar cell, he says.
Previous efforts to grow zinc oxide on silicon have been limited to expensive ultra-high-vacuum methods, and because of silicon's high reactivity, it's been impossible to deposit the zinc oxide directly, without the use of a third material as a buffer. In addition, previous attempts to align the two materials epitaxially - or perfectly one on top of the other - have been unsuccessful until now. By tilting the nanospears 51 degrees, Switzer and his team have reduced the mismatch from 40 percent to just 0.2 percent, a near-perfect alignment.
Epitaxially aligning the zinc oxide and silicon is important to ensure higher efficiency, Switzer says.
Switzer's research is supported through a four-year, $700,000 grant from the Department of Energy's Office of Basic Energy Sciences, Materials Sciences and Engineering Division.
Switzer's co-authors for the Chemistry of Materials paper are Guojun Mu and Rakesh V. Gudavarthy, both graduate students in the Chemistry Department at Missouri S&T, and Dr. Elizabeth A. Kulp, a postdoctoral associate at Missouri S&T.
####
About Missouri University of Science and Technology
Founded in 1870 as one of the first technological schools west of the Mississippi, Missouri S&T today stands poised to meet the challenges of a global, green economy.
Our name may be new, but our commitment to technological education is unchanging. As a land-grant and space-grant institution, we produced the engineers, scientists and innovators who helped drive the Industrial Revolution and propel the Space Age.
For more information, please click here
Contacts:
Office of Public Relations
1201 N. State St.
105 Campus Support Facility
Rolla, MO 65409-0220
Phone: 573-341-4328
Fax: 573-341-6157
Copyright © Missouri University of Science and Technology
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Atomic force microscopy in 3D July 5th, 2024
Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024
Solar/Photovoltaic
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||