Home > Press > UCLA welcomes startup to new incubator space at California NanoSystems Institute
Abstract:
MediSens developing body monitoring systems for diabetes, balance issues
UCLA's newly launched on-campus technology incubator at the California NanoSystems Institute (CNSI) has opened lab space to MediSens Wireless, a startup company that develops and manufactures personal body-monitoring systems for medical and health applications.
The incubator program was established in March to nurture early-stage research and accelerate the commercial translation of technologies developed at UCLA.
MediSens Wireless has licensed patented technology from UCLA for wireless sensor systems developed by Majid Sarrafzadeh, a UCLA professor of computer science and engineering, and his team. The technology is for real-time wireless monitoring of pressure and motion in both medical and non-medical products. The technology will be used to develop body monitoring systems with specific applications for use by diabetic patients with peripheral neuropathy — the loss of sensation in the foot — and those with health issues affecting balance who are at high risk of falls.
As part of this arrangement, MediSens Wireless has obtained an exclusive license that will provide the University of California with a royalty on the company's products. MediSens has rented lab space at the CNSI and will move into the incubator space this month, with access to CNSI core lab facilities for research and development.
"We consider ourselves very fortunate to have been selected to join the UCLA incubator program at CNSI," said Eric Collins, president and CEO of MediSens. "The collaborative and innovative environment within the CNSI facility is an important competitive advantage for MediSens in our mission to bring to market products that improve millions of lives."
The UCLA on-campus Technology Incubation Program at the CNSI is an innovative resource with a mission to help accelerate the growth of entrepreneurial startup companies and early-stage technology research projects that originate at UCLA. The incubator offers shared, flexible lab space dedicated to housing eight to 10 early-stage incubation projects for short periods of time.
"The incubator program is an important way for UCLA to make the fruits of our world-class faculty's research available to the public as rapidly as possible," said UCLA Chancellor Gene Block. "California looks to universities like UCLA for innovative technology. It is fitting then to have these startup companies embedded within the CNSI, whose mission is to fuel economic development by nurturing novel technologies and transferring them from the lab to the clinical arena and commercial market."
"We look forward to working with MediSens to move the technology to product development," said Sarrafzadeh. "The collaborative research environment at CNSI is invigorating, and we are delighted to have MediSens in lab space that benefits from UCLA's great resources.
"We hope that this technology will help to reduce the large number of injuries caused by diabetic foot ulcers and by falls each year, both in hospital rehabilitation departments and in at-home care environments," Sarrafzadeh said.
"We anticipate great success for MediSens as it continues to develop products based on the convergence of computer science and engineering technology with medical and health applications," said Leonard H. Rome, interim director of the CNSI and senior associate dean for research at the David Geffen School of Medicine at UCLA. "CNSI is committed to facilitating collaborations with private industry for the rapid commercialization of new innovations, and we are excited to welcome this startup into the incubator space as it carries out its essential R&D."
Sarrafzadeh is also a co-director of the Wireless Health Institute (WHI) at UCLA, which is dedicated to improving the timeliness and reach of health care through the development and application of wireless, network-enabled technologies integrated with current and next-generation medical enterprise computing. The WHI is under the executive direction of Dr. Patrick Soon-Shiong, a UCLA visiting professor of bioengineering and of microbiology, immunology and molecular genetics and founder and chairman of Abraxis BioScience, a founding partner of the CNSI.
####
About UCLA
The California NanoSystems Institute at UCLA is an integrated research center operating jointly at UCLA and UC Santa Barbara whose mission is to foster interdisciplinary collaborations for discoveries in nanosystems and nanotechnology; train the next generation of scientists, educators and technology leaders; and facilitate partnerships with industry, fueling economic development and the social well-being of California, the United States and the world. The CNSI was established in 2000 with $100 million from the state of California and an additional $250 million in federal research grants and industry funding. At the institute, scientists in the areas of biology, chemistry, biochemistry, physics, mathematics, computational science and engineering are measuring, modifying and manipulating the building blocks of our world — atoms and molecules. These scientists benefit from an integrated laboratory culture enabling them to conduct dynamic research at the nanoscale, leading to significant breakthroughs in the areas of health, energy, the environment and information technology.
For more news, visit the UCLA Newsroom or follow us on Twitter.
For more information, please click here
Contacts:
Jennifer Marcus
310-267-4839
Copyright © UCLA
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Laboratories
A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024
NRL discovers two-dimensional waveguides February 16th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Nanobiotechnology
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
Alliances/Trade associations/Partnerships/Distributorships
Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022
University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||