Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Argonne researchers win four R&D 100 awards

Argonne scientist Jorg Maser loads a sample into the hard X-ray nanoprobe. The nanoprobe uses brilliant X-rays with photon energies from 3 to 30 keV to probe the properties of nanoscale materials with a spatial resolution of 30 nm. The system provides a combination of scanning-probe and full-field transmission imaging. Argonne won a R&D 100 award for the hard X-ray nanoprobe.
Argonne scientist Jorg Maser loads a sample into the hard X-ray nanoprobe. The nanoprobe uses brilliant X-rays with photon energies from 3 to 30 keV to probe the properties of nanoscale materials with a spatial resolution of 30 nm. The system provides a combination of scanning-probe and full-field transmission imaging. Argonne won a R&D 100 award for the hard X-ray nanoprobe.

Abstract:
Researchers from the U.S. Department of Energy's (DOE) Argonne National Laboratory received four R&D 100 awards as judged by R&D Magazine.

Argonne researchers win four R&D 100 awards

Argonne, IL | Posted on August 4th, 2009

"The Department of Energy's national laboratories are incubators of innovation, and I'm proud they are being recognized once again for their remarkable work," said Energy Secretary Steven Chu. "The cutting-edge research and development being done in our national labs is vital to maintaining America's competitive edge, increasing our nation's energy security, and protecting our environment. I want to thank this year's winners for their work and congratulate them on this award."

The awards recognize the top scientific and technological innovations of the past year. Argonne scientists have won 105 R&D 100 awards since they were first introduced in 1964.

"These awards are a testament to the hard work and ingenuity that have become a hallmark here at Argonne," Laboratory Director Eric Isaacs said. "The research that occurs at Argonne will help solve the great challenges facing our planet and usher in a better tomorrow."

This year's winners from Argonne (include):

* The Hard X-ray Nanoprobe

Hard X-ray Nanoprobe for X-ray microscopy

The Hard X-ray Nanoprobe (HXN) provides x-ray imaging and x-ray analysis at a spatial resolution previously not available in the hard x-ray range. The system also provides qualitative new characterization capabilities by combining full field transmission imaging with scanning probe capabilities.

Significant advances in high-accuracy positioning allow positioning of the X-ray optics and sample with an accuracy of two nanometers. This enables the use of advanced X-ray optics — stacked zone plates, multilayer Laue lenses — with a spatial resolution of 30 nanometers or below, providing an unmatched spatial resolution in the hard X-ray range. This has already provided users a better understanding of strain in silicon based devices, distribution of matrix elements in geopolymers, Resistive RAM systems and novel nanocomplosites.

The HXN will also significantly improve the ability of medical scientists and nanoscientists to study use of nanocomposites in tissues, cells and subscellular organelles, which helps develop new medical imaging techniques and therapies.

The HXN is the first system to integrate X-ray fluorescence, X-ray diffraction, and fullfield imaging exchangeable into a single instrument. This allows fast acquisition of full-field tomographic images combined with X-ray fluorescence and/or X-ray diffraction characterization in situ. The HXN offers the combination of superior hard x-ray spatial resolution with very high elemental and strain sensitivity and operation at atmospheric pressure or in a vacuum. It takes advantage of the properties of hard x-rays by allowing imaging of thick and optically opaque samples, the study of inner structures and buried interfaces, while being nonintrusive and nondestructive.

The HXN was jointly developed by a team from Argonne and Xradia Inc. The Argonne team consisted of Jorg Maser, physicist; Deming Shu, senior engineer; Robert Winarski, physicist; Martin Holt, assistant physicist; Brian Stephenson, senior physicist; and Volker Rose, assistant physicist. The Xradia Inc. team consisted of Michael Feser, VP/GM X-ray Nano-Imaging; Tobias Beetz, project manager; Juana Rudati, project manager; and Wenbing Yun. President/ CTO.

####

About Argonne National Laboratory
Mission

Our mission is to apply a unique mix of world-class science, engineering and user facilities to deliver innovative research and technologies. We create new knowledge that addresses the most important scientific and societal needs of our nation.

Vision

Our vision is to lead the world in providing scientific and engineering solutions to the grand challenges of our time: plentiful and safe energy, a healthy environment, economic competitiveness and a secure nation.

For more information, please click here

Contacts:
Brock Cooper
630/252-5565

Copyright © Argonne National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Tools

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project