Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > Photonic Propulsion and fusion work art Bae Institute

August 1st, 2009

Photonic Propulsion and fusion work art Bae Institute

Abstract:
Photonic Laser Thruster (PLT) is an innovative photon thruster that amplifies photon thrust by orders of magnitude by exploiting an active resonant optical cavity formed between two mirrors on paired spacecraft. PLT is predicted to be able to provide the thrust to power ratio (T/P) approaching that of conventional thrusters, such as laser ablation thrusters and electrical thrusters. Yet, PLT has the highest Isp of 3x10^7 sec, which is orders of magnitude larger than that of other conventional thrusters. We have demonstrated the photon thrust amplification in PLT for the first time. The T/P obtained with an OC mirror with R= 0.99967±0.00002 was 20±1 µN/W, and the maximum photon thrust obtained was 35 µN, resulting in an apparent photon thrust amplification factor of 2,990±150. Scaling-up of PLT is promising, and PLT is predicted to enable wide ranges of space endeavors. Low thrust PLTs may enable nanometer precision spacecraft formation for forming ultralarge space telescopes and radars, and provide economically viable solution to Fractionated Spacecraft Architecture, the System F-6. Medium thrust PLTs may enable precision propellantless orbit changing and docking. High thrust PLTs may enable propelling spacecraft at speeds orders of magnitude greater than that by conventional thrusters.

Source:
nextbigfuture.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Blog sites

First measurement of electron energy distributions, could enable sustainable energy technologies June 5th, 2020

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Peter Diamandis Thinks Nanotech Will Interface With Human Minds September 1st, 2016

Graphene-Enabled Paper Makes for Flexible Display August 1st, 2016

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Photonics/Optics/Lasers

New microscope offers faster, high-resolution brain imaging: Enhanced two-photon microscopy method could reveal insights into neural dynamics and neurological diseases August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Single atoms show their true color July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project