Home > News > Photonic Propulsion and fusion work art Bae Institute
August 1st, 2009
Photonic Propulsion and fusion work art Bae Institute
Abstract:
Photonic Laser Thruster (PLT) is an innovative photon thruster that amplifies photon thrust by orders of magnitude by exploiting an active resonant optical cavity formed between two mirrors on paired spacecraft. PLT is predicted to be able to provide the thrust to power ratio (T/P) approaching that of conventional thrusters, such as laser ablation thrusters and electrical thrusters. Yet, PLT has the highest Isp of 3x10^7 sec, which is orders of magnitude larger than that of other conventional thrusters. We have demonstrated the photon thrust amplification in PLT for the first time. The T/P obtained with an OC mirror with R= 0.99967±0.00002 was 20±1 µN/W, and the maximum photon thrust obtained was 35 µN, resulting in an apparent photon thrust amplification factor of 2,990±150. Scaling-up of PLT is promising, and PLT is predicted to enable wide ranges of space endeavors. Low thrust PLTs may enable nanometer precision spacecraft formation for forming ultralarge space telescopes and radars, and provide economically viable solution to Fractionated Spacecraft Architecture, the System F-6. Medium thrust PLTs may enable precision propellantless orbit changing and docking. High thrust PLTs may enable propelling spacecraft at speeds orders of magnitude greater than that by conventional thrusters.
Source:
nextbigfuture.com
Related News Press |
News and information
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
Next-generation drug delivery innovation! DGIST develops precision therapeutics using exosomes April 25th, 2025
Blog sites
First measurement of electron energy distributions, could enable sustainable energy technologies June 5th, 2020
Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016
Peter Diamandis Thinks Nanotech Will Interface With Human Minds September 1st, 2016
Graphene-Enabled Paper Makes for Flexible Display August 1st, 2016
Discoveries
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
Next-generation drug delivery innovation! DGIST develops precision therapeutics using exosomes April 25th, 2025
Announcements
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
Next-generation drug delivery innovation! DGIST develops precision therapeutics using exosomes April 25th, 2025
Photonics/Optics/Lasers
Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024
Researchers succeed in controlling quantum states in a new energy range December 13th, 2024
Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |