Home > News > Nanotech: The Key to Storing Carbon?
July 30th, 2009
Nanotech: The Key to Storing Carbon?
Abstract:
Amy Westervelt: A recent breakthrough at Lawrence Berkeley National Laboratory is bringing together two sectors that people love to fixate on: nanotechnology and carbon sequestration. Although the combo may sound unusual, nanotechnology could actually be the only way we'll figure out if geologic carbon sequestration — stuffing CO2 underground — actually works.
Here's the deal: The most reliable way to store and secure CO2 is to get it to attach to a solid and form a carbonate. (Think coral covering rocks in the ocean.) That process is thermodynamically stable and also provides a long-term solution to holding onto CO2. The problem is that it takes a very long time for that to happen using current methods — as in, thousands of years.
But Lawrence Berkeley recently managed to produce nanoscale magnesium oxide crystals, which staff scientist Jeff Urban says could help speed up that CO2-solid bonding process. "Magnesium oxide crystals are known to influence processes and rates of reaction," he said. "And if we can control the size and surface chemistry of the crystals, we may be able to dramatically increase the rate of CO2 being stuck to the surface."
Source:
earth2tech.com
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Govt.-Legislation/Regulation/Funding/Policy
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Possible Futures
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Environment
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Onion-like nanoparticles found in aircraft exhaust May 14th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |