Home > Press > NSF Awards Parabon NanoLabs Research Grant to Develop Novel Cancer Therapeutics “by Design” versus “by Discovery”
Abstract:
New Anticancer Molecules Engineered to Self-Assemble Using Synthetic DNA
Parabon® NanoLabs, a leading designer and manufacturer of breakthrough products at the nanoscale, announced today its award of a National Science Foundation (NSF) Small Business Innovative Research (SBIR) grant. The grant will be used to demonstrate the viability of a new class of anticancer molecules that are engineered to automatically self-assemble from interlocking strands of synthetic DNA. It was a combination of innovations - DNA nanotechnology fabrication and grid computing sequence optimization - that led to Parabon NanoLabs' award.
Unlike other therapeutics, Parabon's compounds are deliberately engineered to solve specific therapeutic goals using an approach that effectively replaces the current paradigm of "drug discovery" with that of "drug design." By affixing molecular subcomponents (e.g., antibodies, pharmaceuticals and enzymes) to strands of DNA that are pre-sequenced to attach to one another to form composite constructs, Parabon NanoLabs researchers produce therapeutics that are able to precisely target and destroy individual cancer cells, without damaging surrounding healthy tissue. The highly competitive SBIR award from NSF will fund pre-clinical experiments, designed in collaboration with researchers at a leading pharmaceutical company, to validate the approach and demonstrate the efficacy of these novel compounds.
Key to Parabon's approach is the use of synthetic DNA as a programmable molecular substrate. Although DNA is best known as a carrier of genetic information, individual strands of synthetic DNA can be constructed to have any sequence of bases (commonly represented by the letters A, C, G and T). Because certain sequences of DNA are mutually attractive, these synthetic strands can be "programmed" with sequences that cause them to "swim to the right spot," with respect to one another, and then bind to form nanostructures of virtually any shape. By attaching DNA strands to other types of molecular subcomponents (e.g., antibodies to recognize tumor cells and pharmaceuticals comprising a kill payload), nanostructures can be richly functionalized to form novel therapeutics that are able to seek out and destroy specific tumor cells without affecting surrounding tissue.
Parabon NanoLabs has advanced both the fabrication technology required to produce such therapeutics and the computational tools to design them. In particular, the Company has developed a CAD (computer-aided design) application, called inSēquio™, which facilitates the design and sequencing of therapeutic nanostructures by harnessing the computational power of thousands of computers on the Parabon Frontier® Grid Platform. In development for three years, inSēquio utilizes grid computing to solve what had been the major impediment to progress in the field of DNA nanotechnology: the intractable task of calculating the sequences of DNA required for self-assembly and functionalization of target nanostructures.
"NSF runs its SBIR program like a seasoned venture capital firm and the competition for these awards is fierce," stated Dr. Steven Armentrout, Parabon NanoLabs President and CEO. "Parabon NanoLabs is proud to have been granted this opportunity and with it, we are determined to demonstrate the efficacy of our therapeutics."
####
About Parabon® NanoLabs
Parabon NanoLabs, a subsidiary of Parabon Computation, Inc., designs and develops a new class of therapeutics and other products made possible by proprietary technology for precisely directing the self-assembly of designer macromolecules that are functionalized with molecular subcomponents (e.g., enzymes, metals or pharmaceuticals). The Company’s nanoscale development platform gives its scientists the ability to design and construct multi-functional macromolecules from simpler subcomponents, replacing the current paradigm of "molecular discovery" with that of "molecular design." Parabon NanoLabs is actively developing macromolecules for use in the areas of cancer therapeutics, and nanoarrays for rapid readouts of DNA and nano-sensors for bioweapons defense.
About Parabon® Computation
Parabon is a veteran provider of grid computing software and solutions, delivering affordable, extreme-scale computation on demand to customers across a wide variety of market sectors. A year after its 1999 founding, the company launched its flagship product, the Frontier® Grid Platform – a software solution that aggregates computational capacity of existing IT resources and delivers it as a flexible and scalable utility. Frontier can be deployed internally, harnessing the excess computing power of an organization's existing enterprise assets; it can also be deployed across a virtualized data center, providing a complementary high-performance computing service for cloud computing infrastructures. Finally, customers can tap into the power of the Parabon Computation Grid, the company’s online Computation on Demand™ service. For more information, visit www.parabon.com.
For more information, please click here
Contacts:
Larkin Communications
for Parabon Computation
Kim Larkin
703-250-3590 x102
Copyright © Business Wire 2009
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||