Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Chasing tiny vehicles

Abstract:
Microscope shows how nanoferries invade cells

Chasing tiny vehicles

Munich, Germany | Posted on July 21st, 2009

Nanoparticles are just billionths of a millimeter in size. Exhibiting novel and often surprising properties, they are finding their way into an endless stream of equally innovative products. In medical therapies, for example, tiny nanovehicles could one day ferry drugs or even genes into cells. So far, the only way of testing these approaches has been to wait for the desired effect to show - the activation of a transported gene inside a cell for example. Under the direction of LMU Munich physicochemist Professor Christoph Bräuchle, a research group cooperating with Dr. Christian Plank of the Technische Universität München (TUM) has now used a highly sensitive microscopic technique to pursue individual nanoparticles as they make their way into target cells - in real-time and at high spatial and temporal resolution. They tested magnetic nanoparticles that could be used, among other things, in cancer therapy. This approach should also allow a better understanding of existing nanovectors as well as the development of new systems, as reported in the current cover story of the "Journal of Controlled Release". (Journal of Controlled Release, 20 July 2009)

Nanoparticles are so small that many barriers in the body simply can't stop them. They can also use the bloodstream to reach any part of the body. Researchers and doctors alike hope that these tiny vehicles will one day be put to work in therapies carrying drugs directly to the seat of a disease. "Even genes can be transported this way," says Plank. "That means we could be seeing new breakthroughs in gene therapy soon, which has seen more than its fair share of setbacks. After all, lacking most are functional transporters." Such vehicles or vectors have been developed mainly from viruses until now. But even deactivated viruses can sometimes trigger unwanted side-effects. Nanoferries, on the other hand, have been tailored to deliver genes or drugs directly to the target without side-effects.

For such a targeted delivery, however, nanoferries need a kind of search mechanism to guide them to where their cargo is needed. Magnetic particles have already been tried in cancer therapies: They have been administered by infusion and then directed - via magnetic fields - to a tumor whose cells they should invade directly. But until now, is has been impossible to observe nanoparticles along their route, especially into living tumor cells. It is a prerequisite, though, for therapeutic approval and the definition of functional doses to know the exact path of these carriers and the efficiency of their transport and uptake by cancer cells.

So far, only the appearance or absence of the desired therapeutic effect would tell whether an approach was even promising or not. "It's like a black box," Bräuchle says. "You put something in at one end, then wait and see if anything comes out at the other end. What happens in between is anyone's guess." Now, his workgroup has employed highly sensitive single-molecule fluorescence microscopy to follow the nanoferries on their voyage. This highly sensitive method works by tagging individual particles with a dye that acts like a "molecular lamp" to light up the particle's path into the cell.

"Thus, we have traced magnetic lipoplex nanoparticles and made movies of their transport," reports Anna Sauer, first author of the study. "We were able to watch the particles in real-time and at high temporal and spatial resolution as they made their way into the cells." In doing so, the research team could even define separate phases: how the particles reached the cell membrane, came to rest there and then ultimately - enclosed in a membrane vesicle - invaded the cells. The vesicles move randomly, often downright erratically inside the cell, until a so-called motor protein binds them and quickly transports them towards the cell nucleus - the ultimate target for the gene.

The research team is now in a position to characterize and describe in great detail the individual steps along this path. "Our new approach has also revealed bottlenecks in nanoferry transport," Bräuchle reports. "We saw, for example, that the magnetic field can only direct particles outside cells. But, contrary to expectations, it did not facilitate entry into cells. Thanks to these new insights, existing nanoferries can be suitably optimized in future, and even new systems developed." (suwe)

The work was performed in the scope of the clusters of excellence NIM and CiPSM.

Publication:
"Dynamics of magnetic lipoplexes studied by single particle tracking in living cells",
A.M. Sauer, K.G. de Bruin, N. Ruthardt, O. Mykhaylyk, C. Plank, C. Bräuchle,
Journal of Controlled Release, 20 July 2009

####

About Ludwig-Maximilians-Universität
With degree programs available in 150 subjects in numerous combinations, the array of courses we have to offer is extremely wide. Some 44,000 students, 15 percent of whom come to us from abroad, are currently taking advantage of these opportunities. They view their studies as an investment in the future, a launching pad for their later careers.

LMU Munich takes the education of young people very seriously. When we speak of academic diversity, we also mean a comprehensive education that encompasses social skills alongside a critical awareness of values and history. This includes the Munich legacy of the Weisse Rose, the student-based resistance group that opposed Nazism.

For more information, please click here

Contacts:
Professor Christoph Bräuchle
Department of Chemistry and Biochemistry
Ludwig-Maximilians-Universität (LMU) München
Tel.: +49 (0) 89 / 2180 - 77547
Fax: +49 (0) 89 / 2180 - 77548

www.cup.uni-muenchen.de/pc/braeuchle

Copyright © Ludwig-Maximilians-Universität

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Tools

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project