Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanoscale research nets macro funding

Abstract:
SFU's 4D LABS materials science research centre is getting about $884,000 from Western Economic Diversification Canada to add new scientific equipment for faster prototyping.

The Burnaby campus facility houses materials fabrication and design operations that help scientists research and create new technologies. The equipment will help accelerate product commercialization and spin-off companies in key sectors such as nanotechnology, energy and life sciences.

Nanoscale research nets macro funding

Burnaby, BC Canada | Posted on July 9th, 2009

4D LABS executive director Neil Branda and nanofabrication director Byron Gates—both Canada Research Chairs and renowned material scientists—will use the funds to build a Canadian state-of-the-art mask-writing facility in the centre's already impressive nanofabrication laboratory.

Masks are the stencils used in nanolithography to determine which areas are exposed for etching during the fabrication of devices such as semiconductor integrated circuits and nanoelectromechanical systems.

"This new facility will transform academic and private industry researchers' ability to quickly and cost-effectively develop and design new micro- and nanofabricated materials and devices," says Branda, a 4D LABS cofounder.

Using lithographic and mask-making processes, scientists can pattern materials with nano features to create foundations for new technology platforms. For example, nanofeatures could form the critical components in electronic and biomedical diagnostic devices.

Currently, the closest source of masks with micron-scale features (500 nanometres to 100-plus micrometres—about the diameter of a human hair) is Alberta. The SFU mask-writing facility will be able to produce nano- and micron-scale features and structures less than 20 nanometres (about 10,000 times smaller than a human hair).

Researchers will also be able to rapidly write features directly onto materials and structures, eliminating the need for extensive lithographic patterning and allowing for the creation of 3D nanoscale features.

"This capability will eventually be as key to nanoscale materials fabrication as the photocopier is to information dissemination," explains Gates. "We'll be able to fabricate the next generation of technologies, particularly in the fields of alternative energy and biomedical engineering."

####

For more information, please click here

Contacts:
Public Affairs and Media Relations
Simon Fraser University
Strand Hall
8888 University Drive
Burnaby BC V5A 1S6
Canada

Tel: 778.782.3210
Fax: 778.782.3039
Email:

Copyright © Simon Fraser University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Tools

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes

Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023

Simple ballpoint pen can write custom LEDs August 11th, 2023

Disposable electronics on a simple sheet of paper October 7th, 2022

Newly developed technique to improve quantum dots color conversion performance: Researchers created perovskite quantum dot microarrays to achieve better results in full-color light-emitting devices and expand potential applications June 10th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project