Home > Press > Landmark Study on Nanomaterials and the Environment
Abstract:
University of South Carolina study finds manmade nanoparticles could contaminate marine food web
Too tiny to see or touch, manmade nanoparticles are increasingly becoming a byproduct of industry and chemical and pharmaceutical technology.
But once these super small materials enter the water supply, do they reach coastal areas and enter marshes and tidal zones, the complex environments where shellfish and finfish grow?
Researchers at the University of South Carolina's Nanocenter, working with scientists at the National Oceanic and Atmospheric Administration in Charleston, examined whether gold nanorods could readily pass from water to the marine food web.
Their findings, published online at Nature Nanotechnology, suggest that nanoparticles move easily into the marine food web and are absorbed in grasses, trapped in biofilms and consumed by filter feeders, such as clams.
"This is the first study to report on the fate of gold nanoparticles in a complex ecosystem containing sediments, biofilms, grasses, microscopic organisms, filter feeders and omnivores," said environmental chemist Dr. John L. Ferry of the University of South Carolina.
The gold nanorods were used in the study because of their ability to be traced, he said.
For the experiment, scientists at NOAA's Coastal Center for Environmental Health and Biomolecular Research created three estuarine mesocosms, experimental enclosures replicating a coastal ecosystem. In developing the coastal "labs," NOAA scientists constructed a tidal marsh creek, containing natural, unfiltered water from Wadmalaw Island; planted Spartina grass in sedimnents; and added clams, mud snails and grass shrimp. The gold nanorods were synthesized by researchers at USC and introduced into the ecosystems. At the end of the experiment, the USC team developed the techniques necessary to measure the fate of the nanoparticles and found that clams and biofilms accumulated the most.
"As the first experiment of its kind, we really didn't know what to expect," said Dr. Geoff Scott, (Director of Center for Coastal Environmental Health and Biomolecular Research NOAA/NOS), who collaborated with Dr. Michael Fulton, (Estuaries and Land Use Acting Branch Chief, Center for Coastal Environmental Health and Biomolecular research/NOAA) . "This study enabled us to understand how these nanomaterials were transported through the ecosystem."
The research has implications for all coastal environments and will provide a baseline for future studies on the environmental impact of nanomaterials, Scott said.
The study is significant because it shows that manmade nanoparticles can enter the estuarine food and ultimately could find their way into the shellfish and fish that humans eat, said Ferry.
"This study is a road map for where we go next," he said. "We did not look at what happens ‘up the food chain.'"
"This landmark study points towards things to come in the near future", say Tom Vogt, Director of the NanoCenter at the University of South Carolina, "when we will enlarge our national and international R&D footprint even more by developing the recently endowed Center of Economic Excellence for Nanoenvironmental Research and Risk Assessment."
####
About University of South Carolina
The NanoCenter is the University’s focal point for science and engineering studies of nanometer-scale structures, their unique properties, and their integration into functional units. It fosters multidisciplinary research and education efforts involving faculty whose combined expertise spans the disciplines of a comprehensive research university, including the arts and sciences, engineering, and medicine, as well as other professional schools.
For more information, please click here
Contacts:
120 Sumwalt College
University of South Carolina
1212 Greene Street
Columbia, SC 29208
803.777.9927
Copyright © University of South Carolina
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Chemistry
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Single-atom catalysts change spin state when boosted by a magnetic field June 4th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Preparing for Nano
Disruptive by Design: Nano Now February 1st, 2019
How nanoscience will improve our health and lives in the coming years: Targeted medicine deliveries and increased energy efficiency are just two of many ways October 26th, 2016
Searching for a nanotech self-organizing principle May 1st, 2016
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Food/Agriculture/Supplements
New imaging approach transforms study of bacterial biofilms August 8th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Silver nanoparticles: guaranteeing antimicrobial safe-tea November 17th, 2023
Environment
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Onion-like nanoparticles found in aircraft exhaust May 14th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Personal Care/Cosmetics
DGIST and New Life Group launched a research project on "Functional beauty and health products using the latest nanotechnology" May 12th, 2023
A Comprehensive Guide: The Future of Nanotechnology September 13th, 2018
Graphene finds new application as anti-static hair dye: New formula works as well as commercial permanent dyes without chemically altering hairs March 22nd, 2018
Programmable materials find strength in molecular repetition May 23rd, 2016
Safety-Nanoparticles/Risk management
Onion-like nanoparticles found in aircraft exhaust May 14th, 2025
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |