Home > Press > Landmark Study on Nanomaterials and the Environment
Abstract:
University of South Carolina study finds manmade nanoparticles could contaminate marine food web
Too tiny to see or touch, manmade nanoparticles are increasingly becoming a byproduct of industry and chemical and pharmaceutical technology.
But once these super small materials enter the water supply, do they reach coastal areas and enter marshes and tidal zones, the complex environments where shellfish and finfish grow?
Researchers at the University of South Carolina's Nanocenter, working with scientists at the National Oceanic and Atmospheric Administration in Charleston, examined whether gold nanorods could readily pass from water to the marine food web.
Their findings, published online at Nature Nanotechnology, suggest that nanoparticles move easily into the marine food web and are absorbed in grasses, trapped in biofilms and consumed by filter feeders, such as clams.
"This is the first study to report on the fate of gold nanoparticles in a complex ecosystem containing sediments, biofilms, grasses, microscopic organisms, filter feeders and omnivores," said environmental chemist Dr. John L. Ferry of the University of South Carolina.
The gold nanorods were used in the study because of their ability to be traced, he said.
For the experiment, scientists at NOAA's Coastal Center for Environmental Health and Biomolecular Research created three estuarine mesocosms, experimental enclosures replicating a coastal ecosystem. In developing the coastal "labs," NOAA scientists constructed a tidal marsh creek, containing natural, unfiltered water from Wadmalaw Island; planted Spartina grass in sedimnents; and added clams, mud snails and grass shrimp. The gold nanorods were synthesized by researchers at USC and introduced into the ecosystems. At the end of the experiment, the USC team developed the techniques necessary to measure the fate of the nanoparticles and found that clams and biofilms accumulated the most.
"As the first experiment of its kind, we really didn't know what to expect," said Dr. Geoff Scott, (Director of Center for Coastal Environmental Health and Biomolecular Research NOAA/NOS), who collaborated with Dr. Michael Fulton, (Estuaries and Land Use Acting Branch Chief, Center for Coastal Environmental Health and Biomolecular research/NOAA) . "This study enabled us to understand how these nanomaterials were transported through the ecosystem."
The research has implications for all coastal environments and will provide a baseline for future studies on the environmental impact of nanomaterials, Scott said.
The study is significant because it shows that manmade nanoparticles can enter the estuarine food and ultimately could find their way into the shellfish and fish that humans eat, said Ferry.
"This study is a road map for where we go next," he said. "We did not look at what happens ‘up the food chain.'"
"This landmark study points towards things to come in the near future", say Tom Vogt, Director of the NanoCenter at the University of South Carolina, "when we will enlarge our national and international R&D footprint even more by developing the recently endowed Center of Economic Excellence for Nanoenvironmental Research and Risk Assessment."
####
About University of South Carolina
The NanoCenter is the University’s focal point for science and engineering studies of nanometer-scale structures, their unique properties, and their integration into functional units. It fosters multidisciplinary research and education efforts involving faculty whose combined expertise spans the disciplines of a comprehensive research university, including the arts and sciences, engineering, and medicine, as well as other professional schools.
For more information, please click here
Contacts:
120 Sumwalt College
University of South Carolina
1212 Greene Street
Columbia, SC 29208
803.777.9927
Copyright © University of South Carolina
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Chemistry
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
New method in the fight against forever chemicals September 13th, 2024
Preparing for Nano
Disruptive by Design: Nano Now February 1st, 2019
How nanoscience will improve our health and lives in the coming years: Targeted medicine deliveries and increased energy efficiency are just two of many ways October 26th, 2016
Searching for a nanotech self-organizing principle May 1st, 2016
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Food/Agriculture/Supplements
Silver nanoparticles: guaranteeing antimicrobial safe-tea November 17th, 2023
Night-time radiative warming using the atmosphere November 17th, 2023
DGIST and New Life Group launched a research project on "Functional beauty and health products using the latest nanotechnology" May 12th, 2023
Environment
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
New method in the fight against forever chemicals September 13th, 2024
Personal Care/Cosmetics
DGIST and New Life Group launched a research project on "Functional beauty and health products using the latest nanotechnology" May 12th, 2023
A Comprehensive Guide: The Future of Nanotechnology September 13th, 2018
Graphene finds new application as anti-static hair dye: New formula works as well as commercial permanent dyes without chemically altering hairs March 22nd, 2018
Programmable materials find strength in molecular repetition May 23rd, 2016
Safety-Nanoparticles/Risk management
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Billions of nanoplastics released when microwaving baby food containers: Exposure to plastic particles kills up to 75% of cultured kidney cells July 21st, 2023
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||