Home > News > Scientists Reproduce Quantum Entanglement, Einstein's “Spooky Action”
June 9th, 2009
Scientists Reproduce Quantum Entanglement, Einstein's “Spooky Action”
Abstract:
A group of scientists at the National Institute of Standards and Technology recently came a step closer to figuring out where the boundary lies between the quantum and classical physical worlds, and their discovery has big implications for the future of quantum computers— which would have much faster and more powerful processors than our computers do today.
The field of quantum mechanics deals with the behavior of atoms and subatomic particles. In this world, the rules of classical physics seem to go right out the window. Particles can be in two places at the same time (called superposition) and generally act in ways you'd never expect to see in our everyday world. One of the strangest phenomenon in quantum mechanics is called quantum entanglement, where two or more particles are "entangled" and an action performed on one effects the others. (This would be sort of like having an object on Earth and another on the moon, and if you did something to the one on earth it would instantly affect the one on the moon.) Once entangled, the two particles stay inextricably linked. Quantum entanglement is so strange, in fact, that Einstein called it "spooky action at a distance."
Source:
popsci.com
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Possible Futures
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Quantum Computing
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |