Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > Scientists Reproduce Quantum Entanglement, Einstein's “Spooky Action”

June 9th, 2009

Scientists Reproduce Quantum Entanglement, Einstein's “Spooky Action”

Abstract:
A group of scientists at the National Institute of Standards and Technology recently came a step closer to figuring out where the boundary lies between the quantum and classical physical worlds, and their discovery has big implications for the future of quantum computers— which would have much faster and more powerful processors than our computers do today.

The field of quantum mechanics deals with the behavior of atoms and subatomic particles. In this world, the rules of classical physics seem to go right out the window. Particles can be in two places at the same time (called superposition) and generally act in ways you'd never expect to see in our everyday world. One of the strangest phenomenon in quantum mechanics is called quantum entanglement, where two or more particles are "entangled" and an action performed on one effects the others. (This would be sort of like having an object on Earth and another on the moon, and if you did something to the one on earth it would instantly affect the one on the moon.) Once entangled, the two particles stay inextricably linked. Quantum entanglement is so strange, in fact, that Einstein called it "spooky action at a distance."

Source:
popsci.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Quantum Computing

New quantum encoding methods slash circuit complexity in machine learning November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project